Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress

Dietz K-J, Hell R (2015)
Biological chemistry 396(5): 483-494.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dietz, Karl-JosefUniBi; Hell, Rüdiger
Abstract / Bemerkung
In photosynthesizing chloroplasts, rapidly changing energy input, intermediate generation of strong reductants as well as oxidants and multiple participating physicochemical processes and pathways, call for efficient regulation. Coupling redox information to protein function via thiol modifications offers a powerful mechanism to activate, down-regulate and coordinate interdependent processes. Efficient thiol switching of target proteins involves the thiol-disulfide redox regulatory network, which is highly elaborated in chloroplasts. This review addresses the features of this network. Its conditional function depends on specificity of reduction and oxidation reactions and pathways, thiol redox buffering, but also formation of heterogeneous milieus by microdomains, metabolite gradients and macromolecular assemblies. One major player is glutathione. Its synthesis and function is under feedback redox control. The number of thiol-controlled processes and involved thiol switched proteins is steadily increasing, e.g., in tetrapyrrole biosynthesis, plastid transcription and plastid translation. Thus chloroplasts utilize an intricate and versatile redox regulatory network for intraorganellar and retrograde communication.
Erscheinungsjahr
2015
Zeitschriftentitel
Biological chemistry
Band
396
Ausgabe
5
Seite(n)
483-494
ISSN
1437-4315
Page URI
https://pub.uni-bielefeld.de/record/2732678

Zitieren

Dietz K-J, Hell R. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biological chemistry. 2015;396(5):483-494.
Dietz, K. - J., & Hell, R. (2015). Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biological chemistry, 396(5), 483-494. doi:10.1515/hsz-2014-0281
Dietz, Karl-Josef, and Hell, Rüdiger. 2015. “Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress”. Biological chemistry 396 (5): 483-494.
Dietz, K. - J., and Hell, R. (2015). Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biological chemistry 396, 483-494.
Dietz, K.-J., & Hell, R., 2015. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biological chemistry, 396(5), p 483-494.
K.-J. Dietz and R. Hell, “Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress”, Biological chemistry, vol. 396, 2015, pp. 483-494.
Dietz, K.-J., Hell, R.: Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress. Biological chemistry. 396, 483-494 (2015).
Dietz, Karl-Josef, and Hell, Rüdiger. “Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress”. Biological chemistry 396.5 (2015): 483-494.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis MAP-Kinase 3 Phosphorylates UDP-Glucose Dehydrogenase: a Key Enzyme Providing UDP-Sugar for Cell Wall Biosynthesis.
Kohlberger M, Thalhamer T, Weiss R, Tenhaken R., Plant Mol Biol Report 36(5), 2018
PMID: 30930530
Stress-triggered redox signalling: what's in pROSpect?
Foyer CH, Noctor G., Plant Cell Environ 39(5), 2016
PMID: 26264148
Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness.
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S., PLoS One 11(5), 2016
PMID: 27137770
Phosphorylation of GENOMES UNCOUPLED 4 Alters Stimulation of Mg Chelatase Activity in Angiosperms.
Richter AS, Hochheuser C, Fufezan C, Heinze L, Kuhnert F, Grimm B., Plant Physiol 172(3), 2016
PMID: 27688621
Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants.
Chmielowska-Bąk J, Izbiańska K, Deckert J., Front Plant Sci 6(), 2015
PMID: 26082792
Posttranslational Protein Modifications in Plant Metabolism.
Friso G, van Wijk KJ., Plant Physiol 169(3), 2015
PMID: 26338952

79 References

Daten bereitgestellt von Europe PubMed Central.

Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains.
Toivola J, Nikkanen L, Dahlstrom KM, Salminen TA, Lepisto A, Vignols HF, Rintamaki E., Front Plant Sci 4(), 2013
PMID: 24115951
Concerning oscillations.
Walker DA., Photosyn. Res. 34(3), 1992
PMID: 24408834
Putative role of the malate valve enzyme NADP - malate dehydrogenase in signalling inArabidopsis
Heyno, Philos Trans B Biol Sci (), 2014
Glutathione in plants: an integrated overview.
Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH., Plant Cell Environ. 35(2), 2011
PMID: 21777251
Chloroplast translation regulation
Marín, Photosynth Res (), 2007
Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development.
Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ., Plant J. 53(6), 2007
PMID: 18088327
γ - Glutamyl transpeptidase GGT initiates vacuolar degradation of glutathione S - conjugates inArabidopsis
Grzam, FEBS Lett (), 2007
Light - scattering , chlorophyll fluorescence and state of the adenylate system in illuminated spinach leaves
Kobayashi, Biochim Biophys Acta (), 1982
Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses.
Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Muller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JA, Meyer AJ, Cobbett CS., Proc. Natl. Acad. Sci. U.S.A. 107(5), 2010
PMID: 20080670
Seleno - independent glutathione peroxidases More than simple antioxidant scavengers
Herbette, FEBS J (), 2007
The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis.
Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R., Proc. Natl. Acad. Sci. U.S.A. 106(22), 2009
PMID: 19451637
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Functional analysis of the pathways for - Cys peroxiredoxin reduction inArabidopsis thalianachloroplasts
Pulido, Exp Bot (), 2010
AtECB MRL a thioredoxin - like fold protein with disulfide reductase activity , regulates chloroplast gene expression and chloroplast biogenesis inArabidopsis thaliana
Yua, Mol Plant 1(), 2014
Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes.
Albrecht SC, Sobotta MC, Bausewein D, Aller I, Hell R, Dick TP, Meyer AJ., J Biomol Screen 19(3), 2013
PMID: 23954927
Redox signal integration : from stimulus to networks and genes
Dietz, Physiol Plant (), 2008
Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R., Plant J. 52(5), 2007
PMID: 17892447
Successful fertilization requires the presence of at least one major O - acetylserine ( thiol ) lyase for cysteine synthesis in pollen ofArabidopsis
Birke, Plant Physiol (), 2013
Posttranslational influence of NADPH - dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis
Richter, Plant Physiol (), 2013
A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis.
Paulose B, Chhikara S, Coomey J, Jung HI, Vatamaniuk O, Dhankher OP., Plant Cell 25(11), 2013
PMID: 24214398
Ascorbate and glutathione : keeping active oxygen under control
Noctor, Annu Rev Plant Physiol Plant Mol Biol (), 1998
The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts.
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ., Mol. Cell Proteomics 5(1), 2005
PMID: 16207701
Arabidopsischloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses
Chang, Plant Physiol (), 2009
Mutation of a negatively charged amino acid in thioredoxin modifies its reactivity with chloroplastic enzymes
de, Eur J Biochem (), 1991
Kinetics of retrograde signalling initiation in the high light response ofArabidopsis thaliana
Alsharafa, Philos Trans B Biol Sci (), 2014
Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis.
Heber UW, Santarius KA., Biochim. Biophys. Acta 109(2), 1965
PMID: 4379647
The thylakoid proton motive forcein vivo Quantitative , non - invasive probes , energetics , and regulatory consequences of light - induced pmf
Takizawa, Biochim Biophys Acta (), 2007
Alternative electron flows ( water - water cycle and cyclic electron flow around PSI ) in photosynthesis : molecular mechanisms and physiological functions
Miyake, Plant Cell Physiol (), 2010
Redox - network for flexible adjustment of cellular metabolism in photoautotrophic cells
Scheibe, Plant Cell Environ (), 2012
Localization of glutathione synthetase and distribution of glutathione in leaf cells ofPisum sativumL
Klapheck, Plant Physiol (), 1987
Oscillations in photosynthesis are initiated and supported by imbalances in the supply of ATP and NADPH to the Calvin cycle
Laisk, Planta (), 1991
Real-time imaging of the intracellular glutathione redox potential.
Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP., Nat. Methods 5(6), 2008
PMID: 18469822
Knockdown of theArabidopsis thalianachloroplast protein disulfide isomerase results in reduced levels of photoinhibition and increased synthesis in high light
Wittenberg, Plant J (), 2014
and Appenzeller Endoplasmic reticulum : reduced and oxidized glutathione revisited
Birk, Cell Sci (), 2013
Arabidopsis thalianaglutamate - cysteine ligase : functional properties , kinetic mechanism , and regulation of activity
Jez, Biol Chem (), 2004
Proximity - based protein thiol oxidation by - scavenging peroxidases
Gutscher, Biol Chem (), 2009
Redox modulation of Rubisco conformation and activity through its cysteine residues.
Moreno J, Garcia-Murria MJ, Marin-Navarro J., J. Exp. Bot. 59(7), 2008
PMID: 18212026
Identification of a photosystem II phosphatase involved in light acclimation in Arabidopsis.
Samol I, Shapiguzov A, Ingelsson B, Fucile G, Crevecoeur M, Vener AV, Rochaix JD, Goldschmidt-Clermont M., Plant Cell 24(6), 2012
PMID: 22706287
Cyclophilin - relays a - oxo - phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis
Park, Proc Natl Acad Sci USA 20(), 2013
Glutathione homeostasis in plants : implications for environmental sensing and plant development
May, Exp Bot (), 1998
Localization of members of the γ - glutamyl transpeptidase family identifies sites of glutathione and glutathione S - conjugate hydrolysis
Martin, Plant Physiol (), 2007
Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana.
Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM., Plant Cell 19(8), 2007
PMID: 17766407
Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I.
Trebitsh T, Danon A., Proc. Natl. Acad. Sci. U.S.A. 98(21), 2001
PMID: 11593046
pTAC and - are components of the transcriptionally active plastid chromosome that are required for plastid gene expression
Pfalz, Plant Cell 2(), 2006
Redox states of plastids and mitochondria differentially regulate intercellular transport via plasmodesmata
Stonebloom, Plant Physiol (), 2012
Chloroplasts as source and target of cellular redox regulation : a discussion on chloroplast redox signals in the context of plant physiology
Baier, Exp Bot (), 2005
Peroxiredoxin - and form a redox relay for signaling
Sobotta, STAT Nat Chem Biol 2(), 2015
The dynamic thiol - disulphide redox proteome of theArabidopsis thalianachloroplast as revealed by differential electrophoretic mobility
Ströher, Physiol Plant (), 2008
The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.
Passaia G, Queval G, Bai J, Margis-Pinheiro M, Foyer CH., J. Exp. Bot. 65(5), 2014
PMID: 24470466
Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis.
Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H., Plant Cell Environ. 32(4), 2009
PMID: 19143986
The redox switch of gamma-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants.
Gromes R, Hothorn M, Lenherr ED, Rybin V, Scheffzek K, Rausch T., Plant J. 54(6), 2008
PMID: 18346196
The relationship between light scattering and chlorophyll a fluorescence during oscillations in photosynthetic carbon assimilation
Sivak, Arch Biochem Biophys (), 1985
Quantitativein vivomeasurement of glutathione inArabidopsiscells
Meyer, Plant J (), 2001
The emerging roles of protein glutathionylation in chloroplasts
Zaffagnini, Plant Sci (), 2012
γ - Glutamylcysteine synthetase in higher plants : catalytic properties and subcellular localization
Hell, Planta (), 1990
Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways.
Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP., Plant J. 36(5), 2003
PMID: 14617062
Structural basis for the redox control of plant glutamate cysteine ligase
Hothorn, Biol Chem (), 2006
Identification of genes required for embryo development inArabidopsis
Tzafrir, Plant Physiol (), 2004
Studies on the regulatory properties of chloroplast fructose - bisphosphatase
Schürmann, Biochim Biophys Acta (), 1978
Sulfur metabolism: a versatile platform for launching defence operations.
Rausch T, Wachter A., Trends Plant Sci. 10(10), 2005
PMID: 16143557
Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets.
Konig J, Muthuramalingam M, Dietz KJ., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22226570
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow
Blanco, Plant Physiol (), 2013
Regulation of the plant-type 5'-adenylyl sulfate reductase by oxidative stress.
Bick JA, Setterdahl AT, Knaff DB, Chen Y, Pitcher LH, Zilinskas BA, Leustek T., Biochemistry 40(30), 2001
PMID: 11467967
Activation of translation via reduction by thioredoxin - thioredoxin reductase inSaccharomyces cerevisiae
Jun, FEBS Lett (), 2009
Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis.
Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM., Plant Cell 16(9), 2004
PMID: 15308753
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25741945
PubMed | Europe PMC

Suchen in

Google Scholar