Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results?

Nussbeck FW, Eid M, Lischetzke T (2006)
The British journal of mathematical and statistical psychology 59(Pt 1): 195-213.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Nussbeck, Fridtjof W.UniBi ; Eid, Michael; Lischetzke, Tanja
Abstract / Bemerkung
Convergent and discriminant validity of psychological constructs can best be examined in the framework of multitrait-multimethod (MTMM) analysis. To gain information at the level of single items, MTMM models for categorical variables have to be applied. The CTC(M-1) model is presented as an example of an MTMM model for ordinal variables. Based on an empirical application of the CTC(M-1) model, a complex simulation study was conducted to examine the sample size requirements of the robust weighted least squares mean- and variance-adjusted chi(2) test of model fit (WLSMV estimator) implemented in Mplus. In particular, the simulation study analysed the chi(2) approximation, the parameter estimation bias, the standard error bias, and the reliability of the WLSMV estimator depending on the varying number of items per trait-method unit (ranging from 2 to 8) and varying sample sizes (250, 500, 750, and 1000 observations). The results showed that the WLSMV estimator provided a good -- albeit slightly liberal -- chi(2) approximation and stable and reliable parameter estimates for models of reasonable complexity (2-4 items) and small sample sizes (at least 250 observations). When more complex models with 5 or more items were analysed, larger sample sizes of at least 500 observations were needed. The most complex model with 9 trait-method units and 8 items (72 observed variables) requires sample sizes of at least 1000 observations.
Stichworte
Models; Models; Humans; Psychological; Monte Carlo Method; Psychology/statistics & numerical data; Theoretical
Erscheinungsjahr
2006
Zeitschriftentitel
The British journal of mathematical and statistical psychology
Band
59
Ausgabe
Pt 1
Seite(n)
195-213
ISSN
0007-1102
Page URI
https://pub.uni-bielefeld.de/record/2729974

Zitieren

Nussbeck FW, Eid M, Lischetzke T. Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results? The British journal of mathematical and statistical psychology. 2006;59(Pt 1):195-213.
Nussbeck, F. W., Eid, M., & Lischetzke, T. (2006). Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results? The British journal of mathematical and statistical psychology, 59(Pt 1), 195-213. doi:10.1348/000711005X67490
Nussbeck, F. W., Eid, M., and Lischetzke, T. (2006). Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results? The British journal of mathematical and statistical psychology 59, 195-213.
Nussbeck, F.W., Eid, M., & Lischetzke, T., 2006. Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results? The British journal of mathematical and statistical psychology, 59(Pt 1), p 195-213.
F.W. Nussbeck, M. Eid, and T. Lischetzke, “Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results?”, The British journal of mathematical and statistical psychology, vol. 59, 2006, pp. 195-213.
Nussbeck, F.W., Eid, M., Lischetzke, T.: Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results? The British journal of mathematical and statistical psychology. 59, 195-213 (2006).
Nussbeck, Fridtjof W., Eid, Michael, and Lischetzke, Tanja. “Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results?”. The British journal of mathematical and statistical psychology 59.Pt 1 (2006): 195-213.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Bayesian analysis of longitudinal multitrait-multimethod data with ordinal response variables.
Holtmann J, Koch T, Bohn J, Eid M., Br J Math Stat Psychol 70(1), 2017
PMID: 28116783
Modifying the Autism Spectrum Rating Scale (6-18 years) to a Chinese Context: An Exploratory Factor Analysis.
Zhou H, Zhang L, Luo X, Wu L, Zou X, Xia K, Wang Y, Xu X, Ge X, Jiang YH, Fombonne E, Yan W, Wang Y., Neurosci Bull 33(2), 2017
PMID: 28238114
Allergies, antibiotics use, and multiple sclerosis.
Ren J, Ni H, Kim M, Cooley KL, Valenzuela RM, Asche CV., Curr Med Res Opin 33(8), 2017
PMID: 28454489
Developing a comprehensive school connectedness scale for program evaluation.
Chung-Do JJ, Goebert DA, Chang JY, Hamagani F., J Sch Health 85(3), 2015
PMID: 25611940
CFA with binary variables in small samples: a comparison of two methods.
Savalei V, Bonett DG, Bentler PM., Front Psychol 5(), 2014
PMID: 25709585
A longitudinal multilevel CFA-MTMM model for interchangeable and structurally different methods.
Koch T, Schultze M, Eid M, Geiser C., Front Psychol 5(), 2014
PMID: 24860515
Disinhibited eating and weight-related insulin mismanagement among individuals with type 1 diabetes.
Merwin RM, Moskovich AA, Dmitrieva NO, Pieper CF, Honeycutt LK, Zucker NL, Surwit RS, Buhi L., Appetite 81(), 2014
PMID: 24882448
The structure of coping among older adults living with HIV/AIDS and depressive symptoms.
Hansen NB, Harrison B, Fambro S, Bodnar S, Heckman TG, Sikkema KJ., J Health Psychol 18(2), 2013
PMID: 22453164
The performance of robust test statistics with categorical data.
Savalei V, Rhemtulla M., Br J Math Stat Psychol 66(2), 2013
PMID: 22568535
The validity of patient- and clinician-rated measures of needs and the therapeutic relationship in psychosis: a pooled analysis.
Reininghaus U, McCabe R, Slade M, Burns T, Croudace T, Priebe S., Psychiatry Res 209(3), 2013
PMID: 23452753
A trifactor model for integrating ratings across multiple informants.
Bauer DJ, Howard AL, Baldasaro RE, Curran PJ, Hussong AM, Chassin L, Zucker RA., Psychol Methods 18(4), 2013
PMID: 24079932
The development and psychometric properties of the HIV and Abuse Related Shame Inventory (HARSI).
Neufeld SA, Sikkema KJ, Lee RS, Kochman A, Hansen NB., AIDS Behav 16(4), 2012
PMID: 22065235
Do executive and reactive disinhibition mediate the effects of familial substance use disorders on adolescent externalizing outcomes?
Handley ED, Chassin L, Haller MM, Bountress KE, Dandreaux D, Beltran I., J Abnorm Psychol 120(3), 2011
PMID: 21668077
Longitudinal associations between depressive and anxiety disorders: a comparison of two trait models.
Olino TM, Klein DN, Lewinsohn PM, Rohde P, Seeley JR., Psychol Med 38(3), 2008
PMID: 17803836

32 References

Daten bereitgestellt von Europe PubMed Central.


Bollen, 1989
Asymptotically distribution-free methods for the analysis of covariance structures.
Browne MW., Br J Math Stat Psychol 37 ( Pt 1)(), 1984
PMID: 6733054
Convergent and discriminant validation by the multitrait-multimethod matrix.
CAMPBELL DT, FISKE DW., Psychol Bull 56(2), 1959
PMID: 13634291

Chou, 1995

Dumenci, 2000
Bootstrap methods: Another look at the jackknife
Efron, Annals of Statistics 7(), 1979

Efron, 1982

Eid, 1995
A multitrait-multimethod model with minimal assumptions
Eid, Psychometrika 65(), 2000

Eid, 2006
Identification with deficient rank loading matrices in confirmatory factor analysis: Multitrait-multimethod models
Grayson, Psychometrika 59(), 1994
Confirmatory factor analyses of multitrait-multimethod data: Many problems and a few solutions
Marsh, Applied Psychological Measurement 13(), 1989
Multitrait-multimethod analyses: Inferring each trait-method combination with multiple indicators
Marsh, Applied Measurement in Education 6(), 1993

Marsh, 1995
A new, more powerful approach to multitrait-multimethod analyses: Application of second-order confirmatory factor analysis
Marsh, Journal of Applied Psychology 73(), 1988
Consensual validation of personality traits: Evidence from self-reports and ratings
McCrae, Journal of Personality and Social Psychology 43(), 1982
Latent variable structural equation modeling with categorical variables
Muthén, Journal of Econometrics 49(), 1983

AUTHOR UNKNOWN, 0
How to use a Monte Carlo study to decide on sample size and determine power
Muthén, Structural Equation Modeling 9(), 2002

Muthén, 2004
Alternative test criteria in covariance structure analysis: A unified approach
Satorra, Psychometrika 54(), 1989

Satorra, 1992
Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures
Schermelleh-Engel, Methods of Psychological Research 8(), 2003
Coping through emotional approach: scale construction and validation.
Stanton AL, Kirk SB, Cameron CL, Danoff-Burg S., J Pers Soc Psychol 78(6), 2000
PMID: 10870915
Testtheoretische Analysen des Mehrdimensionalen Befindlichkeitsfragebogen (MDBF) [Theoretical analysis of the Multidimensional Mood Questionnaire (MMQ)]
Steyer, Diagnostica 40(), 1994
On the relationship between item response theory and factor analysis of discretized variables
Takane, Psychometrika 52(), 1987
The structure of emotional expressivity: each emotion counts.
Trierweiler LI, Eid M, Lischetzke T., J Pers Soc Psychol 82(6), 2002
PMID: 12051576
Hierarchically nested covariance structure models for multitrait-multimethod data
Widaman, Applied Psychological Measurement 9(), 1985

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16709286
PubMed | Europe PMC

Suchen in

Google Scholar