Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor

Heravi KM, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J (2015)
Journal of Bacteriology 197(5): 959-972.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heravi, Kambiz Morabbi; Lange, Julian; Watzlawick, Hildegard; Kalinowski, JörnUniBi; Altenbuchner, Josef
Abstract / Bemerkung
Corynebacterium glutamicum is able to utilize vanillate, the product of lignin degradation, as the sole carbon source. The vanillate utilization components are encoded by the vanABK operon. The vanA and vanB genes encode the subunits of vanillate O-demethylase, converting vanillate to protocatechuate, while VanK is the specific vanillate transporter. The vanABK operon is regulated by a PadR-type repressor, VanR. Heterologous gene expression and variations of the vanR open reading frame revealed that the functional VanR contains 192 residues (21 kDa) and forms a dimer, as analyzed by size exclusion chromatography. In vivo, ferulate, vanillin, and vanillate induced P-vanABK in C. glutamicum, while only vanillate induced the activity of PvanABK in Escherichia coli lacking the ferulate catabolic system. Differential scanning fluorimetry verified that vanillate is the only effector of VanR. Interaction between the PvanABK DNA fragment and the VanR protein had an equilibrium dissociation constant (KD) of 15.1 +/- 1.7 nM. The VanR-DNA complex had a dissociation rate constant (K-d) of (267 +/- 23) x 10(-6) s(-1), with a half-life of 43.5 +/- 3.6 min. DNase I footprinting localized the VanR binding site at P-vanABK, extending from +9 to +45 on the coding strand. Deletion of the nucleotides +18 to +27 inside the VanR binding site rendered P-vanABK constitutive. Fusion of the T7 promoter and the wild-type VanR operator, as well as its shortened versions, indicated that the inverted repeat AACTAACTAA(N-4) TTAGGTATTT is the specific VanR binding site. It is proposed that the VanR-DNA complex contains two VanR dimers at the VanR operator.
Erscheinungsjahr
2015
Zeitschriftentitel
Journal of Bacteriology
Band
197
Ausgabe
5
Seite(n)
959-972
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/2723776

Zitieren

Heravi KM, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J. Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor. Journal of Bacteriology. 2015;197(5):959-972.
Heravi, K. M., Lange, J., Watzlawick, H., Kalinowski, J., & Altenbuchner, J. (2015). Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor. Journal of Bacteriology, 197(5), 959-972. doi:10.1128/JB.02431-14
Heravi, Kambiz Morabbi, Lange, Julian, Watzlawick, Hildegard, Kalinowski, Jörn, and Altenbuchner, Josef. 2015. “Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor”. Journal of Bacteriology 197 (5): 959-972.
Heravi, K. M., Lange, J., Watzlawick, H., Kalinowski, J., and Altenbuchner, J. (2015). Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor. Journal of Bacteriology 197, 959-972.
Heravi, K.M., et al., 2015. Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor. Journal of Bacteriology, 197(5), p 959-972.
K.M. Heravi, et al., “Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor”, Journal of Bacteriology, vol. 197, 2015, pp. 959-972.
Heravi, K.M., Lange, J., Watzlawick, H., Kalinowski, J., Altenbuchner, J.: Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor. Journal of Bacteriology. 197, 959-972 (2015).
Heravi, Kambiz Morabbi, Lange, Julian, Watzlawick, Hildegard, Kalinowski, Jörn, and Altenbuchner, Josef. “Transcriptional Regulation of the Vanillate Utilization Genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-Like Repressor”. Journal of Bacteriology 197.5 (2015): 959-972.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A functional study of the global transcriptional regulator PadR from a strain Streptomyces fradiae-nitR+bld, resistant to nitrone-oligomycin.
Vatlin AA, Bekker OB, Lysenkova LN, Shchekotikhin AE, Danilenko VN., J Basic Microbiol 58(9), 2018
PMID: 29963725
Crystal structure of the VanR transcription factor and the role of its unique α-helix in effector recognition.
Kwak YM, Park SC, Na HW, Kang SG, Lee GS, Ko HJ, Kim PH, Oh BC, Yoon SI., FEBS J 285(20), 2018
PMID: 30095229
Transcriptional Repressor PtvR Regulates Phenotypic Tolerance to Vancomycin in Streptococcus pneumoniae.
Liu X, Li JW, Feng Z, Luo Y, Veening JW, Zhang JR., J Bacteriol 199(14), 2017
PMID: 28484041
NOT Gate Genetic Circuits to Control Gene Expression in Cyanobacteria.
Taton A, Ma AT, Ota M, Golden SS, Golden JW., ACS Synth Biol 6(12), 2017
PMID: 28803467
Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism.
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E., Environ Microbiol Rep 9(6), 2017
PMID: 29052962
Structural basis of effector and operator recognition by the phenolic acid-responsive transcriptional regulator PadR.
Park SC, Kwak YM, Song WS, Hong M, Yoon SI., Nucleic Acids Res 45(22), 2017
PMID: 29136175
Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
Altenbuchner J., Appl Environ Microbiol 82(17), 2016
PMID: 27342565
Global Transcriptomic Analysis of the Response of Corynebacterium glutamicum to Vanillin.
Chen C, Pan J, Yang X, Guo C, Ding W, Si M, Zhang Y, Shen X, Wang Y., PLoS One 11(10), 2016
PMID: 27760214
Draft Genome Sequence of Streptomyces fradiae olg1-1, a Strain Resistant to Nitrone-Oligomycin.
Vatlin AA, Bekker OB, Lysenkova LN, Danilenko VN., Genome Announc 3(5), 2015
PMID: 26494685

49 References

Daten bereitgestellt von Europe PubMed Central.

Plant cell walls and cell-wall polysaccharides: structures, properties and uses in food products
Harris PhilipJ, Smith BronwenG., International journal of food science and technology. 41(), 2006
PMID: IND43853347
Cementing the wall: cell wall polysaccharide synthesising enzymes.
Reid JG., Curr. Opin. Plant Biol. 3(6), 2000
PMID: 11074383
Phenolic acid bridges between polysaccharides and lignin in wheat internodes
Iiyama K, Lam TBT, Stone BA., 1990
Lignin and fiber digestion
Moore KJ, Jung H-JG., 2001
Exploring bacterial lignin degradation.
Brown ME, Chang MC., Curr Opin Chem Biol 19(), 2013
PMID: 24780273
Lignin-ferulate cross-links in grasses–active incorporation of ferulate polysaccharide esters into ryegrass lignins
Ralph J, Grabber JH, Hatfield RD., 1995
Feruloylation in grasses: current and future perspectives.
de O Buanafina MM., Mol Plant 2(5), 2009
PMID: 19825663
Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview.
Perez J, Munoz-Dorado J, de la Rubia T, Martinez J., Int. Microbiol. 5(2), 2002
PMID: 12180781
Pathways for degradation of lignin in bacteria and fungi.
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R., Nat Prod Rep 28(12), 2011
PMID: 21918777
The emerging role for bacteria in lignin degradation and bio-product formation.
Bugg TD, Ahmad M, Hardiman EM, Singh R., Curr. Opin. Biotechnol. 22(3), 2010
PMID: 21071202
Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis.
Tran NP, Gury J, Dartois V, Nguyen TK, Seraut H, Barthelmebs L, Gervais P, Cavin JF., J. Bacteriol. 190(9), 2008
PMID: 18326577
Vanillate metabolism in Corynebacterium glutamicum.
Merkens H, Beckers G, Wirtz A, Burkovski A., Curr. Microbiol. 51(1), 2005
PMID: 15971090
The beta-ketoadipate pathway and the biology of self-identity.
Harwood CS, Parales RE., Annu. Rev. Microbiol. 50(), 1996
PMID: 8905091
Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase.
Brunel F, Davison J., J. Bacteriol. 170(10), 1988
PMID: 3170489
Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum.
Chaudhry MT, Huang Y, Shen XH, Poetsch A, Jiang CY, Liu SJ., Microbiology (Reading, Engl.) 153(Pt 3), 2007
PMID: 17322206
Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.
Madoori PK, Agustiandari H, Driessen AJ, Thunnissen AM., EMBO J. 28(2), 2008
PMID: 19096365
Crystal structures of two transcriptional regulators from Bacillus cereus define the conserved structural features of a PadR subfamily.
Fibriansah G, Kovacs AT, Pool TJ, Boonstra M, Kuipers OP, Thunnissen AM., PLoS ONE 7(11), 2012
PMID: 23189126
LmrR-mediated gene regulation of multidrug resistance in Lactococcus lactis.
Agustiandari H, Peeters E, de Wit JG, Charlier D, Driessen AJ., Microbiology (Reading, Engl.) 157(Pt 5), 2011
PMID: 21330438
Experiments
Eggeling L, Reyes O., 2005
Requirement of chelating compounds for the growth of in synthetic media
Liebl W, Klamer R, Schleifer K-H., 1989

Sambrook J, Russell DW., 2001
DNA sequencing with chain-terminating inhibitors.
Sanger F, Nicklen S, Coulson AR., Proc. Natl. Acad. Sci. U.S.A. 74(12), 1977
PMID: 271968
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Promoters and plasmid vectors of
Pátek M, Nešvera J., 2013
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum.
Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, Puhler A, Tauch A., Microbiology (Reading, Engl.) 159(Pt 1), 2012
PMID: 23103979
LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis.
Agustiandari H, Lubelski J, van den Berg van Saparoea HB, Kuipers OP, Driessen AJ., J. Bacteriol. 190(2), 2007
PMID: 17993533
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25535273
PubMed | Europe PMC

Suchen in

Google Scholar