Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana

Giesguth M, Sahm A, Simon S, Dietz K-J (2015)
FEBS letters 589(6): 718-725.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
The hypothesis is tested that some heat stress transcription factors (HSFs) are activated after formation of inter- or intramolecular disulfide bonds. Based on in silico analyses we identified conserved cysteinyl residues in AtHSFA8 that might function as redox sensors in plants. AtHSFA8 represents a redox-sensitive transcription factor since upon treatment of protoplasts with H2O2 YFP-labeled HSFA8 was translocated to the nucleus in a time-dependent manner. Site-directed mutagenesis of the conserved residues Cys24 and Cys269 blocked translocation of HSFA8 to the nucleus. The findings concur with a model where HSFA8 functions as redox sensing transcription factor within the stress-responsive transcriptional network.
Erscheinungsjahr
2015
Zeitschriftentitel
FEBS letters
Band
589
Ausgabe
6
Seite(n)
718-725
ISSN
1873-3468
Page URI
https://pub.uni-bielefeld.de/record/2723576

Zitieren

Giesguth M, Sahm A, Simon S, Dietz K-J. Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS letters. 2015;589(6):718-725.
Giesguth, M., Sahm, A., Simon, S., & Dietz, K. - J. (2015). Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS letters, 589(6), 718-725. doi:10.1016/j.febslet.2015.01.039
Giesguth, Miriam, Sahm, Arne, Simon, Swen, and Dietz, Karl-Josef. 2015. “Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana”. FEBS letters 589 (6): 718-725.
Giesguth, M., Sahm, A., Simon, S., and Dietz, K. - J. (2015). Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS letters 589, 718-725.
Giesguth, M., et al., 2015. Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS letters, 589(6), p 718-725.
M. Giesguth, et al., “Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana”, FEBS letters, vol. 589, 2015, pp. 718-725.
Giesguth, M., Sahm, A., Simon, S., Dietz, K.-J.: Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS letters. 589, 718-725 (2015).
Giesguth, Miriam, Sahm, Arne, Simon, Swen, and Dietz, Karl-Josef. “Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana”. FEBS letters 589.6 (2015): 718-725.

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Toward an Integrated Understanding of Retrograde Control of Photosynthesis.
Dietz KJ, Wesemann C, Wegener M, Seidel T., Antioxid Redox Signal 30(9), 2019
PMID: 29463103
Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants.
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V., Front Plant Sci 10(), 2019
PMID: 31428113
Thiol Based Redox Signaling in Plant Nucleus.
Martins L, Trujillo-Hernandez JA, Reichheld JP., Front Plant Sci 9(), 2018
PMID: 29892308
Redox-dependent control of nuclear transcription in plants.
He H, Van Breusegem F, Mhamdi A., J Exp Bot 69(14), 2018
PMID: 29659979
Molecular mechanisms governing plant responses to high temperatures.
Li B, Gao K, Ren H, Tang W., J Integr Plant Biol 60(9), 2018
PMID: 30030890
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca.
Hu Y, Han YT, Wei W, Li YJ, Zhang K, Gao YR, Zhao FL, Feng JY., Front Plant Sci 6(), 2015
PMID: 26442049

30 References

Daten bereitgestellt von Europe PubMed Central.

Heat stress-induced H(2)O (2) is required for effective expression of heat shock genes in Arabidopsis.
Volkov RA, Panchuk II, Mullineaux PM, Schoffl F., Plant Mol. Biol. 61(4-5), 2006
PMID: 16897488
Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks.
Oelze ML, Kandlbinder A, Dietz KJ., Biochim. Biophys. Acta 1780(11), 2008
PMID: 18439433
How do plants feel the heat?
Mittler R, Finka A, Goloubinoff P., Trends Biochem. Sci. 37(3), 2012
PMID: 22236506
Molecular mechanisms of the plant heat stress response.
Qu AL, Ding YF, Jiang Q, Zhu C., Biochem. Biophys. Res. Commun. 432(2), 2013
PMID: 23395681
Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato.
Hahn A, Bublak D, Schleiff E, Scharf KD., Plant Cell 23(2), 2011
PMID: 21307284
The plant heat stress transcription factor (Hsf) family: structure, function and evolution.
Scharf KD, Berberich T, Ebersberger I, Nover L., Biochim. Biophys. Acta 1819(2), 2011
PMID: 22033015
Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?
Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD., Cell Stress Chaperones 6(3), 2001
PMID: 11599559
Signal transduction during oxidative stress.
Vranova E, Inze D, Van Breusegem F., J. Exp. Bot. 53(372), 2002
PMID: 11997371
Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction
Suzuki, Physiol. Plant. 126(), 2006
ROS signaling: the new wave?
Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F., Trends Plant Sci. 16(6), 2011
PMID: 21482172
Redox regulation in photosynthetic organisms: focus on glutathionylation.
Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD., Antioxid. Redox Signal. 16(6), 2011
PMID: 22053845
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.
Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D., J. Biotechnol. 112(1-2), 2004
PMID: 15288951
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
Seidel T, Golldack D, Dietz KJ., FEBS Lett. 579(20), 2005
PMID: 16061227
Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1.
Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M., Exp. Cell Res. 242(2), 1998
PMID: 9683540
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
Konig J, Galliardt H, Jutte P, Schaper S, Dittmann L, Dietz KJ., J. Exp. Bot. 64(11), 2013
PMID: 23828546
The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.
Schnitzer D, Seidel T, Sander T, Golldack D, Dietz KJ., Plant Cell Physiol. 52(5), 2011
PMID: 21474463
PlnTFDB: an integrative plant transcription factor database.
Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B., BMC Bioinformatics 8(), 2007
PMID: 17286856
DISULFIND: a disulfide bonding state and cysteine connectivity prediction server.
Ceroni A, Passerini A, Vullo A, Frasconi P., Nucleic Acids Res. 34(Web Server issue), 2006
PMID: 16844986
Regulation of the Arabidopsis transcriptome by oxidative stress.
Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ., Plant Physiol. 127(1), 2001
PMID: 11553744
Nucleocytoplasmic transport of proteins.
Sorokin AV, Kim ER, Ovchinnikov LP., Biochemistry Mosc. 72(13), 2007
PMID: 18282135
Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light.
Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J., Proc. Natl. Acad. Sci. U.S.A. 110(35), 2013
PMID: 23918368
The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6.
Perez-Salamo I, Papdi C, Rigo G, Zsigmond L, Vilela B, Lumbreras V, Nagy I, Horvath B, Domoki M, Darula Z, Medzihradszky K, Bogre L, Koncz C, Szabados L., Plant Physiol. 165(1), 2014
PMID: 24676858
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25666709
PubMed | Europe PMC

Suchen in

Google Scholar