Local PCA Learning with Resolution-Dependent Mixtures of Gaussians

Meinicke P, Ritter H (1999)
In: ICANN 99. Ninth International Conference on Artificial Neural Networks., 1(470). Edinburgh: IET: 497-502.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Meinicke, Peter; Ritter, HelgeUniBi
Abstract / Bemerkung
A globally linear model, implied by conventional principal component analysis (PCA), may be insufficient to represent multivariate data in many situations. An important question is then how to find an appropriate partitioning of the data space together with a proper choice of the local numbers of principal components (PCs). We address both problems within a density estimation framework and propose a probabilistic approach which is based on a mixture of subspace-constrained Gaussians. Thereby the number of local PCs depends on a global resolution parameter, which represents the assumed noise level and determines the degree of smoothing imposed by the model. As a result, the model leads to an automatic resolution-dependent adjustment of the optimal principal subspace dimensionalities, which may vary among the different mixture components. Furthermore it provides the optimization with an annealing scheme, which solves the initialization problem and offers an incremental model refinement procedure.
Erscheinungsjahr
1999
Titel des Konferenzbandes
ICANN 99. Ninth International Conference on Artificial Neural Networks
Band
1
Ausgabe
470
Seite(n)
497-502
Konferenz
Ninth International Conference on Artificial Neural Networks
Konferenzort
Edinburgh
Konferenzdatum
1999-09-07 – 1999-09-10
ISSN
0-85296-721-7
Page URI
https://pub.uni-bielefeld.de/record/2714887

Zitieren

Meinicke P, Ritter H. Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. In: ICANN 99. Ninth International Conference on Artificial Neural Networks. Vol 1. Edinburgh: IET; 1999: 497-502.
Meinicke, P., & Ritter, H. (1999). Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. ICANN 99. Ninth International Conference on Artificial Neural Networks, 1(470), 497-502. doi:10.1049/cp:19991158
Meinicke, Peter, and Ritter, Helge. 1999. “Local PCA Learning with Resolution-Dependent Mixtures of Gaussians”. In ICANN 99. Ninth International Conference on Artificial Neural Networks, 1:497-502. Edinburgh: IET.
Meinicke, P., and Ritter, H. (1999). “Local PCA Learning with Resolution-Dependent Mixtures of Gaussians” in ICANN 99. Ninth International Conference on Artificial Neural Networks, vol. 1, (Edinburgh: IET), 497-502.
Meinicke, P., & Ritter, H., 1999. Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. In ICANN 99. Ninth International Conference on Artificial Neural Networks. no.1 Edinburgh: IET, pp. 497-502.
P. Meinicke and H. Ritter, “Local PCA Learning with Resolution-Dependent Mixtures of Gaussians”, ICANN 99. Ninth International Conference on Artificial Neural Networks, vol. 1, Edinburgh: IET, 1999, pp.497-502.
Meinicke, P., Ritter, H.: Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. ICANN 99. Ninth International Conference on Artificial Neural Networks. 1, p. 497-502. IET, Edinburgh (1999).
Meinicke, Peter, and Ritter, Helge. “Local PCA Learning with Resolution-Dependent Mixtures of Gaussians”. ICANN 99. Ninth International Conference on Artificial Neural Networks. Edinburgh: IET, 1999.Vol. 1. 497-502.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar