Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets

Heidemann G, Bekel H, Bax I, Saalbach A (2004)
In: Proceedings of the 17th International Conference on Pattern Recognition. J. Kittler MP, Nixon M (Eds); , 4. Cambridge, UK: IEEE: 487-490.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heidemann, Gunther; Bekel, Holger; Bax, Ingo; Saalbach, Axel
Herausgeber*in
J. Kittler, M. Petrou; Nixon, M.
Abstract / Bemerkung
Gesture recognition is a difficult task in computer vision due to the numerous degrees of freedom of a human hand. Fortunately, human gesture covers only a small part of the theoretical "configuration space" of a hand, so an appearance based representation of human gesture becomes tractable. A major problem, however, is the acquisition of appropriate labelled image data from which an appearance based representation can be built. In This work we apply self-organising maps for a visualisation of large amounts of segmented hands performing pointing gestures. Using a graphical interface, an easy labelling of the data set is facilitated. The labelled set is used to train a neural classification system, which is itself embedded in a larger architecture for the recognition of gestural reference to objects.
Erscheinungsjahr
2004
Titel des Konferenzbandes
Proceedings of the 17th International Conference on Pattern Recognition
Band
4
Seite(n)
487-490
Konferenz
17th International Conference on Pattern Recognition
Konferenzdatum
2004-08-23 – 2004-08-26
ISSN
1051-4651
Page URI
https://pub.uni-bielefeld.de/record/2714437

Zitieren

Heidemann G, Bekel H, Bax I, Saalbach A. Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets. In: J. Kittler MP, Nixon M, eds. Proceedings of the 17th International Conference on Pattern Recognition. Vol 4. Cambridge, UK: IEEE; 2004: 487-490.
Heidemann, G., Bekel, H., Bax, I., & Saalbach, A. (2004). Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets. In M. P. J. Kittler & M. Nixon (Eds.), Proceedings of the 17th International Conference on Pattern Recognition (Vol. 4, pp. 487-490). Cambridge, UK: IEEE. doi:10.1109/ICPR.2004.1333817
Heidemann, G., Bekel, H., Bax, I., and Saalbach, A. (2004). “Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets” in Proceedings of the 17th International Conference on Pattern Recognition, J. Kittler, M. P., and Nixon, M. eds., vol. 4, (Cambridge, UK: IEEE), 487-490.
Heidemann, G., et al., 2004. Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets. In M. P. J. Kittler & M. Nixon, eds. Proceedings of the 17th International Conference on Pattern Recognition. no.4 Cambridge, UK: IEEE, pp. 487-490.
G. Heidemann, et al., “Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets”, Proceedings of the 17th International Conference on Pattern Recognition, M.P. J. Kittler and M. Nixon, eds., vol. 4, Cambridge, UK: IEEE, 2004, pp.487-490.
Heidemann, G., Bekel, H., Bax, I., Saalbach, A.: Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets. In: J. Kittler, M.P. and Nixon, M. (eds.) Proceedings of the 17th International Conference on Pattern Recognition. 4, p. 487-490. IEEE, Cambridge, UK (2004).
Heidemann, Gunther, Bekel, Holger, Bax, Ingo, and Saalbach, Axel. “Hand Gesture Recognition: Self-Organising Maps as a Graphical User Interface for the Partitioning of Large Training Data Sets”. Proceedings of the 17th International Conference on Pattern Recognition. Ed. M. Petrou J. Kittler and M. Nixon. Cambridge, UK: IEEE, 2004.Vol. 4. 487-490.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar