The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors

Townsend PD, Jungwirth B, Pojer F, Bußmann M, Money VA, Cole ST, Pühler A, Tauch A, Bott M, Cann MJ, Pohl E (2014)
PloS one 9(12): e113265.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Townsend, Philip D; Jungwirth, BrittaUniBi; Pojer, Florence; Bußmann, Michael; Money, Victoria A; Cole, Stewart T; Pühler, AlfredUniBi ; Tauch, AndreasUniBi; Bott, Michael; Cann, Martin J; Pohl, Ehmke
Abstract / Bemerkung
The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator) transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition.
Erscheinungsjahr
2014
Zeitschriftentitel
PloS one
Band
9
Ausgabe
12
Art.-Nr.
e113265
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2710114

Zitieren

Townsend PD, Jungwirth B, Pojer F, et al. The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors. PloS one. 2014;9(12): e113265.
Townsend, P. D., Jungwirth, B., Pojer, F., Bußmann, M., Money, V. A., Cole, S. T., Pühler, A., et al. (2014). The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors. PloS one, 9(12), e113265. doi:10.1371/journal.pone.0113265
Townsend, Philip D, Jungwirth, Britta, Pojer, Florence, Bußmann, Michael, Money, Victoria A, Cole, Stewart T, Pühler, Alfred, et al. 2014. “The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors”. PloS one 9 (12): e113265.
Townsend, P. D., Jungwirth, B., Pojer, F., Bußmann, M., Money, V. A., Cole, S. T., Pühler, A., Tauch, A., Bott, M., Cann, M. J., et al. (2014). The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors. PloS one 9:e113265.
Townsend, P.D., et al., 2014. The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors. PloS one, 9(12): e113265.
P.D. Townsend, et al., “The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors”, PloS one, vol. 9, 2014, : e113265.
Townsend, P.D., Jungwirth, B., Pojer, F., Bußmann, M., Money, V.A., Cole, S.T., Pühler, A., Tauch, A., Bott, M., Cann, M.J., Pohl, E.: The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors. PloS one. 9, : e113265 (2014).
Townsend, Philip D, Jungwirth, Britta, Pojer, Florence, Bußmann, Michael, Money, Victoria A, Cole, Stewart T, Pühler, Alfred, Tauch, Andreas, Bott, Michael, Cann, Martin J, and Pohl, Ehmke. “The Crystal Structures of Apo and cAMP-Bound GlxR from Corynebacterium glutamicum Reveal Structural and Dynamic Changes upon cAMP Binding in CRP/FNR Family Transcription Factors”. PloS one 9.12 (2014): e113265.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Novel structural features drive DNA binding properties of Cmr, a CRP family protein in TB complex mycobacteria.
Ranganathan S, Cheung J, Cassidy M, Ginter C, Pata JD, McDonough KA., Nucleic Acids Res 46(1), 2018
PMID: 29165665
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Global low-frequency motions in protein allostery: CAP as a model system.
Townsend PD, Rodgers TL, Pohl E, Wilson MR, McLeish TC, Cann MJ., Biophys Rev 7(2), 2015
PMID: 26000062
Global low-frequency motions in protein allostery: CAP as a model system.
Townsend PD, Rodgers TL, Pohl E, Wilson MR, McLeish TCB, Cann MJ., Biophys Rev 7(2), 2015
PMID: 28510169
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket.
Gunasekara SM, Hicks MN, Park J, Brooks CL, Serate J, Saunders CV, Grover SK, Goto JJ, Lee JW, Youn H., J Biol Chem 290(44), 2015
PMID: 26378231
Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J., Metab Eng 32(), 2015
PMID: 26453945

59 References

Daten bereitgestellt von Europe PubMed Central.

Biotechnological production of amino acids and derivatives: current status and prospects.
Leuchtenberger W, Huthmacher K, Drauz K., Appl. Microbiol. Biotechnol. 69(1), 2005
PMID: 16195792
Production of arginine by fermentation.
Utagawa T., J. Nutr. 134(10 Suppl), 2004
PMID: 15465800
Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.
Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M., Metab. Eng. 22(), 2013
PMID: 24333966
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 81(3), 2008
PMID: 18777022
Production of green products from biomass by novel bioprocess
AUTHOR UNKNOWN, 2004
Technological options for biological fuel ethanol.
Vertes AA, Inui M, Yukawa H., J. Mol. Microbiol. Biotechnol. 15(1), 2008
PMID: 18349547
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J. Bacteriol. 188(8), 2006
PMID: 16585752
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum.
Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, Puhler A, Tauch A., Microbiology (Reading, Engl.) 159(Pt 1), 2012
PMID: 23103979
Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase.
Han SO, Inui M, Yukawa H., Microbiology (Reading, Engl.) 153(Pt 7), 2007
PMID: 17600063
The mechanisms of carbon catabolite repression in bacteria.
Deutscher J., Curr. Opin. Microbiol. 11(2), 2008
PMID: 18359269
Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees.
Schultz SC, Shields GC, Steitz TA., Science 253(5023), 1991
PMID: 1653449
Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA interface.
Parkinson G, Wilson C, Gunasekera A, Ebright YW, Ebright RH, Ebright RE, Berman HM., J. Mol. Biol. 260(3), 1996
PMID: 8757802
The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer.
Passner JM, Steitz TA., Proc. Natl. Acad. Sci. U.S.A. 94(7), 1997
PMID: 9096308
Structural basis for cAMP-mediated allosteric control of the catabolite activator protein.
Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG., Proc. Natl. Acad. Sci. U.S.A. 106(17), 2009
PMID: 19359484
Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding.
Sharma H, Yu S, Kong J, Wang J, Steitz TA., Proc. Natl. Acad. Sci. U.S.A. 106(39), 2009
PMID: 19805344
Profound asymmetry in the structure of the cAMP-free cAMP Receptor Protein (CRP) from Mycobacterium tuberculosis.
Gallagher DT, Smith N, Kim SK, Robinson H, Reddy PT., J. Biol. Chem. 284(13), 2009
PMID: 19193643
Dynamically driven protein allostery.
Popovych N, Sun S, Ebright RH, Kalodimos CG., Nat. Struct. Mol. Biol. 13(9), 2006
PMID: 16906160
Protein activity regulation by conformational entropy.
Tzeng SR, Kalodimos CG., Nature 488(7410), 2012
PMID: 22801505
Modulation of Global Low-Frequency Motions Underlies Allosteric Regulation: Demonstration in CRP/FNR Family Transcription Factors
AUTHOR UNKNOWN, 2013
Delta Delta PT: a comprehensive toolbox for the analysis of protein motion
AUTHOR UNKNOWN, 2013
The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum.
Panhorst M, Sorger-Herrmann U, Wendisch VF., J. Biotechnol. 154(2-3), 2010
PMID: 20638427
Protein production by auto-induction in high density shaking cultures.
Studier FW., Protein Expr. Purif. 41(1), 2005
PMID: 15915565
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM., J. Bacteriol. 188(2), 2006
PMID: 16385030
Mounting of crystals for macromolecular crystallography in a free-standing thin film
AUTHOR UNKNOWN, 1990
XDS.
Kabsch W., Acta Crystallogr. D Biol. Crystallogr. 66(Pt 2), 2010
PMID: 20124692
Solving structures of protein complexes by molecular replacement with Phaser.
McCoy AJ., Acta Crystallogr. D Biol. Crystallogr. 63(Pt 1), 2006
PMID: 17164524
Structural insights into the mechanism of the allosteric transitions of Mycobacterium tuberculosis cAMP receptor protein.
Reddy MC, Palaninathan SK, Bruning JB, Thurman C, Smith D, Sacchettini JC., J. Biol. Chem. 284(52), 2009
PMID: 19740754
Features and development of Coot.
Emsley P, Lohkamp B, Scott WG, Cowtan K., Acta Crystallogr. D Biol. Crystallogr. 66(Pt 4), 2010
PMID: 20383002
REFMAC5 for the refinement of macromolecular crystal structures.
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA., Acta Crystallogr. D Biol. Crystallogr. 67(Pt 4), 2011
PMID: 21460454
PROCHECK: a program to check the stereochemical quality of protein structures.
Laskowski RA, MacArthur MW, Moss DS, Thornton JM., J Appl Crystallogr 26(2), 1993
PMID: c6802
The structure of the T127L/S128A mutant of cAMP receptor protein facilitates promoter site binding.
Chu SY, Tordova M, Gilliland GL, Gorshkova I, Shi Y, Wang S, Schwarz FP., J. Biol. Chem. 276(14), 2000
PMID: 11124966
RAPIDO: a web server for the alignment of protein structures in the presence of conformational changes.
Mosca R, Schneider TR., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18460546
Dynamic activation of an allosteric regulatory protein.
Tzeng SR, Kalodimos CG., Nature 462(7271), 2009
PMID: 19924217
Effect of cAMP binding site mutations on the interaction of cAMP receptor protein with cyclic nucleoside monophosphate ligands and DNA.
Moore JL, Gorshkova II, Brown JW, McKenney KH, Schwarz FP., J. Biol. Chem. 271(35), 1996
PMID: 8702903
Structural overview on the allosteric activation of cyclic AMP receptor protein.
Won HS, Lee YS, Lee SH, Lee BJ., Biochim. Biophys. Acta 1794(9), 2009
PMID: 19439203
Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family.
Hong M, Fuangthong M, Helmann JD, Brennan RG., Mol. Cell 20(1), 2005
PMID: 16209951
Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis.
Frenois F, Engohang-Ndong J, Locht C, Baulard AR, Villeret V., Mol. Cell 16(2), 2004
PMID: 15494316
ESPript: analysis of multiple sequence alignments in PostScript.
Gouet P, Courcelle E, Stuart DI, Metoz F., Bioinformatics 15(4), 1999
PMID: 10320398
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25469635
PubMed | Europe PMC

Suchen in

Google Scholar