Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III)

Kowalewski B, Heimann P, Ortkras T, Lüllmann-Rauch R, Sawada T, Walkley SU, Dierks T, Damme M (2015)
Human Molecular Genetics 24(7): 1856-1868.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kowalewski, BjörnUniBi; Heimann, PeterUniBi; Ortkras, Theresa; Lüllmann-Rauch, Renate; Sawada, Tomo; Walkley, Steven U; Dierks, ThomasUniBi; Damme, MarkusUniBi
Abstract / Bemerkung
: Deficiency of Arylsulfatase G (ARSG) leads to a lysosomal storage disease in mice resembling biochemical and pathological features of the mucopolysaccharidoses and particularly features of mucopolysaccharidosis type III (Sanfilippo syndrome). Here we show that Arsg KO mice share common neuropathological findings with other Sanfilippo syndrome models and patients, but can be clearly distinguished by the limitation of most phenotypic alterations to the cerebellum, presenting with ataxia as the major neurological finding. We determined in detail the expression of ARSG in the central nervous system and observed highest expression in perivascular macrophages (which are characterized by abundant vacuolization in Arsg KO mice) and oligodendrocytes. To gain insight into possible mechanisms leading to ataxia, the pathology in older adult mice (> 12 months) was investigated in detail. This study revealed massive loss of Purkinje cells and gliosis in the cerebellum, and secondary accumulation of glycolipids like GM2 and GM3 gangliosides and unesterified cholesterol in surviving Purkinje cells, as well as neurons of some other brain regions. The abundant presence of ubiquitin and p62-positive aggregates in degenerating Purkinje cells coupled with the absence of significant defects in macroautophagy is consistent with lysosomal membrane permeabilization playing a role in the pathogenesis of Arsg deficient mice and presumably Sanfilippo disease in general. Our data delineating the phenotype of mucopolysaccharidosis IIIE in a mouse KO model should help in the identification of possible human cases of this disease.
Erscheinungsjahr
2015
Zeitschriftentitel
Human Molecular Genetics
Band
24
Ausgabe
7
Seite(n)
1856-1868
ISSN
0964-6906
eISSN
1460-2083
Page URI
https://pub.uni-bielefeld.de/record/2709463

Zitieren

Kowalewski B, Heimann P, Ortkras T, et al. Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics. 2015;24(7):1856-1868.
Kowalewski, B., Heimann, P., Ortkras, T., Lüllmann-Rauch, R., Sawada, T., Walkley, S. U., Dierks, T., et al. (2015). Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics, 24(7), 1856-1868. doi:10.1093/hmg/ddu603
Kowalewski, Björn, Heimann, Peter, Ortkras, Theresa, Lüllmann-Rauch, Renate, Sawada, Tomo, Walkley, Steven U, Dierks, Thomas, and Damme, Markus. 2015. “Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III)”. Human Molecular Genetics 24 (7): 1856-1868.
Kowalewski, B., Heimann, P., Ortkras, T., Lüllmann-Rauch, R., Sawada, T., Walkley, S. U., Dierks, T., and Damme, M. (2015). Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics 24, 1856-1868.
Kowalewski, B., et al., 2015. Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics, 24(7), p 1856-1868.
B. Kowalewski, et al., “Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III)”, Human Molecular Genetics, vol. 24, 2015, pp. 1856-1868.
Kowalewski, B., Heimann, P., Ortkras, T., Lüllmann-Rauch, R., Sawada, T., Walkley, S.U., Dierks, T., Damme, M.: Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics. 24, 1856-1868 (2015).
Kowalewski, Björn, Heimann, Peter, Ortkras, Theresa, Lüllmann-Rauch, Renate, Sawada, Tomo, Walkley, Steven U, Dierks, Thomas, and Damme, Markus. “Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III)”. Human Molecular Genetics 24.7 (2015): 1856-1868.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans.
Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A, Obolensky A, Ben-Yosef T, Gross M, Dierks T, Banin E, Rivolta C, Sharon D., Genet Med 20(9), 2018
PMID: 29300381
Sensorimotor and Neurocognitive Dysfunctions Parallel Early Telencephalic Neuropathology in Fucosidosis Mice.
Stroobants S, Wolf H, Callaerts-Vegh Z, Dierks T, Lübke T, D'Hooge R., Front Behav Neurosci 12(), 2018
PMID: 29706874
Arylsulfatase K is the Lysosomal 2-Sulfoglucuronate Sulfatase.
Dhamale OP, Lawrence R, Wiegmann EM, Shah BA, Al-Mafraji K, Lamanna WC, Lübke T, Dierks T, Boons GJ, Esko JD., ACS Chem Biol 12(2), 2017
PMID: 28055182
Canine neuronal ceroid lipofuscinoses: Promising models for preclinical testing of therapeutic interventions.
Katz ML, Rustad E, Robinson GO, Whiting REH, Student JT, Coates JR, Narfstrom K., Neurobiol Dis 108(), 2017
PMID: 28860089
Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7.
Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S., Hum Mol Genet 25(4), 2016
PMID: 26681805
The Chihuahua dog: A new animal model for neuronal ceroid lipofuscinosis CLN7 disease?
Faller KM, Bras J, Sharpe SJ, Anderson GW, Darwent L, Kun-Rodrigues C, Alroy J, Penderis J, Mole SE, Gutierrez-Quintana R, Guerreiro RJ., J Neurosci Res 94(4), 2016
PMID: 26762174
A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease.
Wolf H, Damme M, Stroobants S, D'Hooge R, Beck HC, Hermans-Borgmeyer I, Lüllmann-Rauch R, Dierks T, Lübke T., Dis Model Mech 9(9), 2016
PMID: 27491075
Sanfilippo syndrome: causes, consequences, and treatments.
Fedele AO., Appl Clin Genet 8(), 2015
PMID: 26648750

45 References

Daten bereitgestellt von Europe PubMed Central.

Sanfilippo syndrome: a mini-review.
Valstar MJ, Ruijter GJ, van Diggelen OP, Poorthuis BJ, Wijburg FA., J. Inherit. Metab. Dis. 31(2), 2008
PMID: 18392742

Neufeld E.F., Muenzer J.., 2001
Mucopolysaccharidoses.
Muenzer J., Adv Pediatr 33(), 1986
PMID: 3099554
Mucopolysaccharidosis type III (Sanfilippo syndrome) and misdiagnosis of idiopathic developmental delay, attention deficit/hyperactivity disorder or autism spectrum disorder
Wijburg F.A., Wegrzyn G., Burton B.K., Tylki-Szymanska A.., 2013
Two cases of mucopolysaccharidosis type III (Sanfilippo). An anatomopathological study.
Martin JJ, Ceuterick C, Van Dessel G, Lagrou A, Dierick W., Acta Neuropathol. 46(3), 1979
PMID: 223363
Human mucopolysaccharidosis IIID: clinical, biochemical, morphological and immunohistochemical characteristics.
Jones MZ, Alroy J, Rutledge JC, Taylor JW, Alvord EC Jr, Toone J, Applegarth D, Hopwood JJ, Skutelsky E, Ianelli C, Thorley-Lawson D, Mitchell-Herpolsheimer C, Arias A, Sharp P, Evans W, Sillence D, Cavanagh KT., J. Neuropathol. Exp. Neurol. 56(10), 1997
PMID: 9329460
Sanfilippo disease, type A with some features of ceroid lipofuscinosis.
Wisniewski K, Rudelli R, Laure-Kamionowska M, Sklower S, Houck GE Jr, Kieras F, Ramos P, Wisniewski HM, Braak H., Neuropediatrics 16(2), 1985
PMID: 3925366
Murine mucopolysaccharidosis type I: targeted disruption of the murine alpha-L-iduronidase gene.
Clarke LA, Russell CS, Pownall S, Warrington CL, Borowski A, Dimmick JE, Toone J, Jirik FR., Hum. Mol. Genet. 6(4), 1997
PMID: 9097952
Mouse model of Sanfilippo syndrome type B produced by targeted disruption of the gene encoding alpha-N-acetylglucosaminidase.
Li HH, Yu WH, Rozengurt N, Zhao HZ, Lyons KM, Anagnostaras S, Fanselow MS, Suzuki K, Vanier MT, Neufeld EF., Proc. Natl. Acad. Sci. U.S.A. 96(25), 1999
PMID: 10588735
Disease correction by combined neonatal intracranial AAV and systemic lentiviral gene therapy in Sanfilippo Syndrome type B mice.
Heldermon CD, Qin EY, Ohlemiller KK, Herzog ED, Brown JR, Vogler C, Hou W, Orrock JL, Crawford BE, Sands MS., Gene Ther. 20(9), 2013
PMID: 23535899
Therapeutic efficacy of bone marrow transplant, intracranial AAV-mediated gene therapy, or both in the mouse model of MPS IIIB.
Heldermon CD, Ohlemiller KK, Herzog ED, Vogler C, Qin E, Wozniak DF, Tan Y, Orrock JL, Sands MS., Mol. Ther. 18(5), 2010
PMID: 20179679
Hematopoietic stem cell and gene therapy corrects primary neuropathology and behavior in mucopolysaccharidosis IIIA mice.
Langford-Smith A, Wilkinson FL, Langford-Smith KJ, Holley RJ, Sergijenko A, Howe SJ, Bennett WR, Jones SA, Wraith J, Merry CL, Wynn RF, Bigger BW., Mol. Ther. 20(8), 2012
PMID: 22547151
Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease.
Malinowska M, Wilkinson FL, Langford-Smith KJ, Langford-Smith A, Brown JR, Crawford BE, Vanier MT, Grynkiewicz G, Wynn RF, Wraith JE, Wegrzyn G, Bigger BW., PLoS ONE 5(12), 2010
PMID: 21152017
Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice.
Kowalewski B, Lamanna WC, Lawrence R, Damme M, Stroobants S, Padva M, Kalus I, Frese MA, Lubke T, Lullmann-Rauch R, D'Hooge R, Esko JD, Dierks T., Proc. Natl. Acad. Sci. U.S.A. 109(26), 2012
PMID: 22689975
A canine Arylsulfatase G (ARSG) mutation leading to a sulfatase deficiency is associated with neuronal ceroid lipofuscinosis.
Abitbol M, Thibaud JL, Olby NJ, Hitte C, Puech JP, Maurer M, Pilot-Storck F, Hedan B, Dreano S, Brahimi S, Delattre D, Andre C, Gray F, Delisle F, Caillaud C, Bernex F, Panthier JJ, Aubin-Houzelstein G, Blot S, Tiret L., Proc. Natl. Acad. Sci. U.S.A. 107(33), 2010
PMID: 20679209
Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease.
Ko DC, Milenkovic L, Beier SM, Manuel H, Buchanan J, Scott MP., PLoS Genet. 1(1), 2005
PMID: 16103921
Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease.
Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R., J. Comp. Neurol. 456(3), 2003
PMID: 12528192
Secondary lipid accumulation in lysosomal disease.
Walkley SU, Vanier MT., Biochim. Biophys. Acta 1793(4), 2008
PMID: 19111580
Secondary accumulation of gangliosides in lysosomal storage disorders.
Walkley SU., Semin. Cell Dev. Biol. 15(4), 2004
PMID: 15207833
Autophagy in lysosomal storage disorders.
Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A., Autophagy 8(5), 2012
PMID: 22647656
Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease.
Micsenyi MC, Sikora J, Stephney G, Dobrenis K, Walkley SU., J. Neurosci. 33(26), 2013
PMID: 23804102
p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.
Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T., J. Cell Biol. 171(4), 2005
PMID: 16286508
Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB.
Wilkinson FL, Holley RJ, Langford-Smith KJ, Badrinath S, Liao A, Langford-Smith A, Cooper JD, Jones SA, Wraith JE, Wynn RF, Merry CL, Bigger BW., PLoS ONE 7(4), 2012
PMID: 22558223
A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome).
Bhaumik M, Muller VJ, Rozaklis T, Johnson L, Dobrenis K, Bhattacharyya R, Wurzelmann S, Finamore P, Hopwood JJ, Walkley SU, Stanley P., Glycobiology 9(12), 1999
PMID: 10561464
Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.
Mato M, Ookawara S, Sakamoto A, Aikawa E, Ogawa T, Mitsuhashi U, Masuzawa T, Suzuki H, Honda M, Yazaki Y, Watanabe E, Luoma J, Yla-Herttuala S, Fraser I, Gordon S, Kodama T., Proc. Natl. Acad. Sci. U.S.A. 93(8), 1996
PMID: 8622926
Blood-brain barrier impairment in an animal model of MPS III B.
Garbuzova-Davis S, Louis MK, Haller EM, Derasari HM, Rawls AE, Sanberg PR., PLoS ONE 6(3), 2011
PMID: 21408219
Caprine mucopolysaccharidosis IIID: fetal and neonatal brain and liver glycosaminoglycan and morphological perturbations.
Jones MZ, Alroy J, Downs-Kelly E, Lucas RE, Kraemer SA, Cavanagh KT, King B, Hopwood JJ., J. Mol. Neurosci. 24(2), 2004
PMID: 15456941
Heparan sulfate 3-O-sulfation: a rare modification in search of a function.
Thacker BE, Xu D, Lawrence R, Esko JD., Matrix Biol. 35(), 2013
PMID: 24361527
The role and metabolism of sulfatide in the nervous system.
Eckhardt M., Mol. Neurobiol. 37(2-3), 2008
PMID: 18465098
Two cases of mucopolysaccharidosis type III (Sanfilippo). A biochemical study.
Van Dessel G, Lagrou A, Martin JJ, Ceuterick C, Dierick W., J. Neurol. Sci. 40(2-3), 1979
PMID: 107278
Caprine mucopolysaccharidosis-IIID: clinical, biochemical, morphological and immunohistochemical characteristics.
Jones MZ, Alroy J, Boyer PJ, Cavanagh KT, Johnson K, Gage D, Vorro J, Render JA, Common RS, Leedle RA, Lowrie C, Sharp P, Liour SS, Levene B, Hoard H, Lucas R, Hopwood JJ., J. Neuropathol. Exp. Neurol. 57(2), 1998
PMID: 9600207
Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent.
Gondre-Lewis MC, McGlynn R, Walkley SU., Curr. Biol. 13(15), 2003
PMID: 12906793
Endosomal/lysosomal processing of gangliosides affects neuronal cholesterol sequestration in Niemann-Pick disease type C.
Zhou S, Davidson C, McGlynn R, Stephney G, Dobrenis K, Vanier MT, Walkley SU., Am. J. Pathol. 179(2), 2011
PMID: 21708114
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.
Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, Yoshimori T., EMBO J. 32(17), 2013
PMID: 23921551
Spatiotemporally controlled induction of autophagy-mediated lysosome turnover.
Hung YH, Chen LM, Yang JY, Yang WY., Nat Commun 4(), 2013
PMID: 23817530
Scoring evaluation of the natural course of mucopolysaccharidosis type IIIA (Sanfilippo syndrome type A).
Meyer A, Kossow K, Gal A, Muhlhausen C, Ullrich K, Braulke T, Muschol N., Pediatrics 120(5), 2007
PMID: 17938166
Genetic heterogeneity and clinical variability in the Sanfilippo syndrome (types A, B, and C).
van de Kamp JJ, Niermeijer MF, von Figura K, Giesberts MA., Clin. Genet. 20(2), 1981
PMID: 6796310
Heparan sulfate 3-O-sulfation: a rare modification in search of a function.
Thacker BE, Xu D, Lawrence R, Esko JD., Matrix Biol. 35(), 2013
PMID: 24361527
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25452429
PubMed | Europe PMC

Suchen in

Google Scholar