Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape

Irla M, Neshat A, Brautaset T, Rückert C, Kalinowski J, Wendisch VF (2015)
BMC Genomics 16: 73.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Background Bacillus methanolicus MGA3 is a thermophilic, facultative ribulose monophosphate (RuMP) cycle methylotroph. Together with its ability to produce high yields of amino acids, the relevance of this microorganism as a promising candidate for biotechnological applications is evident. The B. methanolicus MGA3 genome consists of a 3,337,035 nucleotides (nt) circular chromosome, the 19,174 nt plasmid pBM19 and the 68,999 nt plasmid pBM69. 3,218 protein-coding regions were annotated on the chromosome, 22 on pBM19 and 82 on pBM69. In the present study, the RNA-seq approach was used to comprehensively investigate the transcriptome of B. methanolicus MGA3 in order to improve the genome annotation, identify novel transcripts, analyze conserved sequence motifs involved in gene expression and reveal operon structures. For this aim, two different cDNA library preparation methods were applied: one which allows characterization of the whole transcriptome and another which includes enrichment of primary transcript 5′-ends. Results Analysis of the primary transcriptome data enabled the detection of 2,167 putative transcription start sites (TSSs) which were categorized into 1,642 TSSs located in the upstream region (5′-UTR) of known protein-coding genes and 525 TSSs of novel antisense, intragenic, or intergenic transcripts. Firstly, 14 wrongly annotated translation start sites (TLSs) were corrected based on primary transcriptome data. Further investigation of the identified 5′-UTRs resulted in the detailed characterization of their length distribution and the detection of 75 hitherto unknown cis-regulatory RNA elements. Moreover, the exact TSSs positions were utilized to define conserved sequence motifs for translation start sites, ribosome binding sites and promoters in B. methanolicus MGA3. Based on the whole transcriptome data set, novel transcripts, operon structures and mRNA abundances were determined. The analysis of the operon structures revealed that almost half of the genes are transcribed monocistronically (940), whereas 1,164 genes are organized in 381 operons. Several of the genes related to methylotrophy had highly abundant transcripts. Conclusion The extensive insights into the transcriptional landscape of B. methanolicus MGA3, gained in this study, represent a valuable foundation for further comparative quantitative transcriptome analyses and possibly also for the development of molecular biology tools which at present are very limited for this organism.
Erscheinungsjahr
Zeitschriftentitel
BMC Genomics
Band
16
Art.-Nr.
73
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Irla M, Neshat A, Brautaset T, Rückert C, Kalinowski J, Wendisch VF. Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics. 2015;16: 73.
Irla, M., Neshat, A., Brautaset, T., Rückert, C., Kalinowski, J., & Wendisch, V. F. (2015). Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics, 16, 73. doi:10.1186/s12864-015-1239-4
Irla, M., Neshat, A., Brautaset, T., Rückert, C., Kalinowski, J., and Wendisch, V. F. (2015). Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics 16:73.
Irla, M., et al., 2015. Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics, 16: 73.
M. Irla, et al., “Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape”, BMC Genomics, vol. 16, 2015, : 73.
Irla, M., Neshat, A., Brautaset, T., Rückert, C., Kalinowski, J., Wendisch, V.F.: Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics. 16, : 73 (2015).
Irla, Marta, Neshat, Armin, Brautaset, Trygve, Rückert, Christian, Kalinowski, Jörn, and Wendisch, Volker F. “Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape”. BMC Genomics 16 (2015): 73.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-11-24T11:04:21Z

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Development of a formaldehyde biosensor with application to synthetic methylotrophy.
Woolston BM, Roth T, Kohale I, Liu DR, Stephanopoulos G., Biotechnol Bioeng 115(1), 2018
PMID: 28921510
RNAseq analysis of α-proteobacterium Gluconobacter oxydans 621H.
Kranz A, Busche T, Vogel A, Usadel B, Kalinowski J, Bott M, Polen T., BMC Genomics 19(1), 2018
PMID: 29304737
Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae.
Drejer EB, Hakvåg S, Irla M, Brautaset T., Microorganisms 6(2), 2018
PMID: 29748477
DNA sequence encodes the position of DNA supercoils.
Kim SH, Ganji M, Kim E, van der Torre J, Abbondanzieri E, Dekker C., Elife 7(), 2018
PMID: 30523779
l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.
Nærdal I, Netzer R, Irla M, Krog A, Heggeset TMB, Wendisch VF, Brautaset T., J Biotechnol 244(), 2017
PMID: 28163092
6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 251(), 2017
PMID: 28427920
Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S., Microb Cell Fact 15(), 2016
PMID: 27251037

106 References

Daten bereitgestellt von Europe PubMed Central.

Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria.
Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH, Bulygina ES, Chumakov KM, Govorukhina NI, Trotsenko YA, White D., Int. J. Syst. Bacteriol. 42(3), 1992
PMID: 1380290
L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.
Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS., Appl. Environ. Microbiol. 56(4), 1990
PMID: 2111119

AUTHOR UNKNOWN, 0
Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.
Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC., Appl. Environ. Microbiol. 69(7), 2003
PMID: 12839772
Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA., Trends Biotechnol. 27(2), 2008
PMID: 19111927
Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 degrees C.
Brautaset T, Jakobsen OM, Josefsen KD, Flickinger MC, Ellingsen TE., Appl. Microbiol. Biotechnol. 74(1), 2007
PMID: 17216461
Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme.
Arfman N, Watling EM, Clement W, van Oosterwijk RJ, de Vries GE, Harder W, Attwood MM, Dijkhuizen L., Arch. Microbiol. 152(3), 1989
PMID: 2673121
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Muller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA., Proteomics 14(6), 2014
PMID: 24452867
Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus.
Brautaset T, Jakobsen M OM, Flickinger MC, Valla S, Ellingsen TE., J. Bacteriol. 186(5), 2004
PMID: 14973041
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.
Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T., Appl. Environ. Microbiol. 78(15), 2012
PMID: 22610424
The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.
Stolzenberger J, Lindner SN, Wendisch VF., Microbiology (Reading, Engl.) 159(Pt 8), 2013
PMID: 23760818

M, J Biotechnol S0168–1656(), 2014
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750

C, Nature 464(March), 2010
Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.
Jakobsen OM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19060158
Improved base calling for the Illumina Genome Analyzer using machine learning strategies.
Kircher M, Stenzel U, Kelso J., Genome Biol. 10(8), 2009
PMID: 19682367
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.
Ao W, Gaudet J, Kent WJ, Muttumu S, Mango SE., Science 305(5691), 2004
PMID: 15375261
Sequence logos: a new way to display consensus sequences.
Schneider TD, Stephens RM., Nucleic Acids Res. 18(20), 1990
PMID: 2172928

A, Nat Methods 5(), 2008

N, Appl Microbiol Biotechnol 29(), 1988
New insights into riboswitch regulation mechanisms.
Bastet L, Dube A, Masse E, Lafontaine DA., Mol. Microbiol. 80(5), 2011
PMID: 21477128
Sigma factors, asymmetry, and the determination of cell fate in Bacillus subtilis.
Lewis PJ, Partridge SR, Errington J., Proc. Natl. Acad. Sci. U.S.A. 91(9), 1994
PMID: 8171000

E, Microbiology 143(Pt 10), 1997
Transcriptional regulation of the ilv-leu operon of Bacillus subtilis.
Grandoni JA, Zahler SA, Calvo JM., J. Bacteriol. 174(10), 1992
PMID: 1577690

A, Microbiology 143(Pt 3), 1997
Mapping of a transcription promoter located inside the priA gene of the Bacillus subtilis chromosome.
Hinc K, Iwanicki A, Seror S, Obuchowski M., Acta Biochim. Pol. 53(3), 2006
PMID: 16964327
Transcription in the prpC-yloQ region in Bacillus subtilis.
Iwanicki A, Hinc K, Seror S, Wegrzyn G, Obuchowski M., Arch. Microbiol. 183(6), 2005
PMID: 16025310
Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability.
Mader U, Homuth G, Scharf C, Buttner K, Bode R, Hecker M., J. Bacteriol. 184(15), 2002
PMID: 12107147
Rfam: an RNA family database.
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR., Nucleic Acids Res. 31(1), 2003
PMID: 12520045

K, Microbiology 141(Pt 11), 1995
BsrG/SR4 from Bacillus subtilis--the first temperature-dependent type I toxin-antitoxin system.
Jahn N, Preis H, Wiedemann C, Brantl S., Mol. Microbiol. 83(3), 2012
PMID: 22229825
ARNold: a web tool for the prediction of Rho-independent transcription terminators.
Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D., RNA Biol 8(1), 2011
PMID: 21282983
Predicted highly expressed genes of diverse prokaryotic genomes.
Karlin S, Mrazek J., J. Bacteriol. 182(18), 2000
PMID: 10960111
Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
Schwientek P, Neshat A, Kalinowski J, Klein A, Ruckert C, Schneiker-Bekel S, Wendler S, Stoye J, Puhler A., J. Biotechnol. 190(), 2014
PMID: 24642337
Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions.
Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S, Vogel J, Stadler PF, Bonas U., Nucleic Acids Res. 40(5), 2011
PMID: 22080557
RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation.
Wiegand S, Dietrich S, Hertel R, Bongaerts J, Evers S, Volland S, Daniel R, Liesegang H., BMC Genomics 14(), 2013
PMID: 24079885
Regulation of noise in the expression of a single gene.
Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A., Nat. Genet. 31(1), 2002
PMID: 11967532
Translation initiation in Escherichia coli: sequences within the ribosome-binding site.
Ringquist S, Shinedling S, Barrick D, Green L, Binkley J, Stormo GD, Gold L., Mol. Microbiol. 6(9), 1992
PMID: 1375310
Compilation and analysis of Escherichia coli promoter DNA sequences.
Hawley DK, McClure WR., Nucleic Acids Res. 11(8), 1983
PMID: 6344016
DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters: a systematic study.
Burr T, Mitchell J, Kolb A, Minchin S, Busby S., Nucleic Acids Res. 28(9), 2000
PMID: 10756184
Structure of the bacterial RNA polymerase promoter specificity sigma subunit.
Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA., Mol. Cell 9(3), 2002
PMID: 11931761
The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an "extended minus 10" promoter.
Kumar A, Malloch RA, Fujita N, Smillie DA, Ishihama A, Hayward RS., J. Mol. Biol. 232(2), 1993
PMID: 8345519
rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase.
Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL., Cell 125(6), 2006
PMID: 16777598
Promoter selectivity of prokaryotic RNA polymerases.
Ishihama A., Trends Genet. 4(10), 1988
PMID: 3076288
Promoter for a developmentally regulated gene in Bacillus subtilis.
Moran CP Jr, Lang N, Banner CD, Haldenwang WG, Losick R., Cell 25(3), 1981
PMID: 6269757
RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation.
Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M, Santos-Zavaleta A, Penaloza-Spinola MI, Contreras-Moreira B, Segura-Salazar J, Muniz-Rascado L, Martinez-Flores I, Salgado H, Bonavides-Martinez C, Abreu-Goodger C, Rodriguez-Penagos C, Miranda-Rios J, Morett E, Merino E, Huerta AM, Trevino-Quintanilla L, Collado-Vides J., Nucleic Acids Res. 36(Database issue), 2007
PMID: 18158297
DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information.
Sierro N, Makita Y, de Hoon M, Nakai K., Nucleic Acids Res. 36(Database issue), 2007
PMID: 17962296

AUTHOR UNKNOWN, 0
The enigma of ribonuclease P evolution.
Hartmann E, Hartmann RK., Trends Genet. 19(10), 2003
PMID: 14550630

AUTHOR UNKNOWN, 0
6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter.
Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR., RNA 11(5), 2005
PMID: 15811922

K, Proc Natl Acad Sci U S A 73(), 1976
Trans-translation mediated by Bacillus subtilis tmRNA.
Ito K, Tadaki T, Lee S, Takada K, Muto A, Himeno H., FEBS Lett. 516(1-3), 2002
PMID: 11959141

CM, Curr Opin Microbiol 19C(), 2014
Bacterial antisense RNAs: how many are there, and what are they doing?
Thomason MK, Storz G., Annu. Rev. Genet. 44(), 2010
PMID: 20707673
Gene regulation by antisense transcription.
Pelechano V, Steinmetz LM., Nat. Rev. Genet. 14(12), 2013
PMID: 24217315
Regulation by small RNAs in bacteria: expanding frontiers.
Storz G, Vogel J, Wassarman KM., Mol. Cell 43(6), 2011
PMID: 21925377
Coenzyme B12 controls transcription of the Streptomyces class Ia ribonucleotide reductase nrdABS operon via a riboswitch mechanism.
Borovok I, Gorovitz B, Schreiber R, Aharonowitz Y, Cohen G., J. Bacteriol. 188(7), 2006
PMID: 16547038
The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination.
Auger S, Yuen WH, Danchin A, Martin-Verstraete I., Microbiology (Reading, Engl.) 148(Pt 2), 2002
PMID: 11832514
The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, D- and L-methionine.
Hullo MF, Auger S, Dassa E, Danchin A, Martin-Verstraete I., Res. Microbiol. 155(2), 2004
PMID: 14990259
Structure determination of a nucleoside Q precursor isolated from E. coli tRNA: 7-(aminomethyl)-7-deazaguanosine.
Okada N, Noguchi S, Nishimura S, Ohgi T, Goto T, Crain PF, McCloskey JA., Nucleic Acids Res. 5(7), 1978
PMID: 353740
A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
Roth A, Winkler WC, Regulski EE, Lee BW, Lim J, Jona I, Barrick JE, Ritwik A, Kim JN, Welz R, Iwata-Reuyl D, Breaker RR., Nat. Struct. Mol. Biol. 14(4), 2007
PMID: 17384645
Principles of c-di-GMP signalling in bacteria.
Hengge R., Nat. Rev. Microbiol. 7(4), 2009
PMID: 19287449
Riboswitches in eubacteria sense the second messenger cyclic di-GMP.
Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR., Science 321(5887), 2008
PMID: 18635805
Riboswitches in eubacteria sense the second messenger c-di-AMP.
Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR., Nat. Chem. Biol. 9(12), 2013
PMID: 24141192
Control of gene expression by a natural metabolite-responsive ribozyme.
Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR., Nature 428(6980), 2004
PMID: 15029187
Comparative genomic analysis of T-box regulatory systems in bacteria.
Vitreschak AG, Mironov AA, Lyubetsky VA, Gelfand MS., RNA 14(4), 2008
PMID: 18359782
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Gutierrez-Preciado A, Henkin TM, Grundy FJ, Yanofsky C, Merino E., Microbiol. Mol. Biol. Rev. 73(1), 2009
PMID: 19258532
Autogenous control: ribosomal protein L10-L12 complex binds to the leader sequence of its mRNA.
Johnsen M, Christensen T, Dennis PP, Fiil NP., EMBO J. 1(8), 1982
PMID: 6765237
A computational pipeline for high- throughput discovery of cis-regulatory noncoding RNA in prokaryotes.
Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, Tompa M, Ruzzo WL., PLoS Comput. Biol. 3(7), 2007
PMID: 17616982
Tandem riboswitch architectures exhibit complex gene control functions.
Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A, Breaker RR., Science 314(5797), 2006
PMID: 17038623
New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria.
Gutierrez-Preciado A, Jensen RA, Yanofsky C, Merino E., Trends Genet. 21(8), 2005
PMID: 15953653
The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000.
Bairoch A, Apweiler R., Nucleic Acids Res. 28(1), 2000
PMID: 10592178

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25758049
PubMed | Europe PMC

Suchen in

Google Scholar