L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources

Eberhardt D, Vold Korgaard Jensen J, Wendisch VF (2014)
AMB Express 4(1): 85.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
L-citrulline plays an important role in human health and nutrition and is an intermediate of the L-arginine biosynthetic pathway. L-citrulline is a by-product of L-arginine production by Corynebacterium glutamicum. In this study, C. glutamicum was engineered for overproduction of L-citrulline as major product without L-arginine being produced as by-product. To this end, L-arginine biosynthesis was derepressed by deletion of the arginine repressor gene argR and conversion of L-citrulline towards L-arginine was avoided by deletion of the argininosuccinate synthetase gene argG. Moreover, to facilitate L-citrulline production the gene encoding a feedback resistant N-acetyl L-glutamate kinase argBfbr as well as the gene encoding L-ornithine carbamoylphosphate transferase argF were overexpressed. The resulting strain accumulated 44.1 ± 0.5 mM L-citrulline from glucose minimal medium with a yield of 0.38 ± 0.01 g⋅g−1 and a volumetric productivity of 0.32 ± 0.01 g⋅l−1⋅h−1. In addition, production of L-citrulline from the alternative carbon sources starch, xylose, and glucosamine could be demonstrated.
Stichworte
L-citrulline; Corynebacterium glutamicum; L-arginine; Alternative carbon sources; Starch; Metabolic engineering; Xylose; Glucosamine
Erscheinungsjahr
2014
Zeitschriftentitel
AMB Express
Band
4
Ausgabe
1
Art.-Nr.
85
ISSN
2191-0855
eISSN
2191-0855
Page URI
https://pub.uni-bielefeld.de/record/2705103

Zitieren

Eberhardt D, Vold Korgaard Jensen J, Wendisch VF. L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express. 2014;4(1): 85.
Eberhardt, D., Vold Korgaard Jensen, J., & Wendisch, V. F. (2014). L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express, 4(1), 85. doi:10.1186/s13568-014-0085-0
Eberhardt, D., Vold Korgaard Jensen, J., and Wendisch, V. F. (2014). L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 4:85.
Eberhardt, D., Vold Korgaard Jensen, J., & Wendisch, V.F., 2014. L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express, 4(1): 85.
D. Eberhardt, J. Vold Korgaard Jensen, and V.F. Wendisch, “L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources”, AMB Express, vol. 4, 2014, : 85.
Eberhardt, D., Vold Korgaard Jensen, J., Wendisch, V.F.: L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express. 4, : 85 (2014).
Eberhardt, Dorit, Vold Korgaard Jensen, Jaide, and Wendisch, Volker F. “L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources”. AMB Express 4.1 (2014): 85.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:28Z
MD5 Prüfsumme
c53dbd0eef25f916b21b4c5573599b4d

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
Wang B, Hu Q, Zhang Y, Shi R, Chai X, Liu Z, Shang X, Zhang Y, Wen T., Microb Cell Fact 17(1), 2018
PMID: 29685154
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol 102(22), 2018
PMID: 30218378
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Pérez-García F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565
Citrulline metabolism in plants.
Joshi V, Fernie AR., Amino Acids 49(9), 2017
PMID: 28741223
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR., Front Microbiol 8(), 2017
PMID: 29075239
Updates on industrial production of amino acids using Corynebacterium glutamicum.
Wendisch VF, Jorge JMP, Pérez-García F, Sgobba E., World J Microbiol Biotechnol 32(6), 2016
PMID: 27116971
Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum.
Lubitz D, Jorge JM, Pérez-García F, Taniguchi H, Wendisch VF., Appl Microbiol Biotechnol 100(19), 2016
PMID: 27350619

51 References

Daten bereitgestellt von Europe PubMed Central.

Regulation of carbon metabolism in Corynebacterium glutamicum
Arndt A, Eikmanns BJ., 2008
Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology.
Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, Bott M, Noack S, Frunzke J., Appl. Environ. Microbiol. 79(19), 2013
PMID: 23892752
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Blombach B, Hans S, Bathe B, Eikmanns BJ., Appl. Environ. Microbiol. 75(2), 2008
PMID: 19047397
Almost all about citrulline in mammals.
Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Benazeth S, Cynober L., Amino Acids 29(3), 2005
PMID: 16082501
An improved temperature triggered process for glutamate production with Corynebacterium glutamicum
Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, Lindley NL, Goergen JL., 1999
Experiments
Eggeling L, Reyes O., 2005

Fish WW., 2012

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF., Appl. Microbiol. Biotechnol. 98(3), 2013
PMID: 24270893
Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids.
Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T., Appl. Microbiol. Biotechnol. 98(10), 2014
PMID: 24687754
Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.
Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M., Appl. Environ. Microbiol. 75(6), 2009
PMID: 19139237
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum
Jensen JV, Wendisch VF., 2013
Enzymatic production of L-citrulline by Pseudomonas putida.
Kakimoto T, Shibatani T, Nishimura N, Chibata I., Appl Microbiol 22(6), 1971
PMID: 5137589
TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion.
Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF., Appl. Environ. Microbiol. 75(3), 2008
PMID: 19074606
Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum.
Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H., Appl. Microbiol. Biotechnol. 81(6), 2008
PMID: 18923827
Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum.
Kim J, Fukuda H, Hirasawa T, Nagahisa K, Nagai K, Wachi M, Shimizu H., Appl. Microbiol. Biotechnol. 86(3), 2009
PMID: 19956942
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176

Okumura S, Shibuya M, Shimpachi K, Teruo S, Noboru K., 1966
Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.
Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 144 ( Pt 4)(), 1998
PMID: 9579065
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum.
Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L., Microbiology (Reading, Engl.) 151(Pt 5), 2005
PMID: 15870446
Determination of citrulline in watermelon rind.
Rimando AM, Perkins-Veazie PM., J Chromatogr A 1078(1-2), 2005
PMID: 16007998
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl. Environ. Microbiol. 74(20), 2008
PMID: 18757581
Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway.
Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N., Microbiology (Reading, Engl.) 142 ( Pt 1)(), 1996
PMID: 8581175

Sambrook J, Russell D., 2012
Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum.
Sato H, Orishimo K, Shirai T, Hirasawa T, Nagahisa K, Shimizu H, Wachi M., J. Biosci. Bioeng. 106(1), 2008
PMID: 18691531
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Production of L-Lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface.
Tateno T, Fukuda H, Kondo A., Appl. Microbiol. Biotechnol. 74(6), 2007
PMID: 17216452
High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence.
Teramoto H, Watanabe K, Suzuki N, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 91(3), 2011
PMID: 21523478
Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions.
Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A., AMB Express 3(1), 2013
PMID: 24342107
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Über Citrullin, eine neue Aminosäure im Presssaft der Wassermelone, Citrullus vulgaris Schrad
Wada M., 1930

AUTHOR UNKNOWN, 0
Continuous production of L-citrulline by immobilized Pseudomonas putida cells.
Yamamoto K, Sato T, Tosa T, Chibata I., Biotechnol. Bioeng. 16(12), 1974
PMID: 4441633

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26267114
PubMed | Europe PMC

Suchen in

Google Scholar