Gibbs states on random configurations

Daletskii A, Kondratiev Y, Kozitsky Y, Pasurek T (2014)
Journal of Mathematical Physics 55(8).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
Gibbs states of a spin system with the single-spin space S = R-m and unbounded pair interactions are studied. The spins are attached to the points of a realization gamma of a random point process in R-n. Under certain conditions on the model parameters we prove that, for almost all gamma, the set G(S-gamma) of all Gibbs states is nonempty and its elements have support properties, explicitly described in the paper. We also show the existence of measurable selections. gamma bar right arrow nu(gamma) is an element of(S-gamma) (random Gibbs measures) and the corresponding averaged moment estimates. (C) 2014 AIP Publishing LLC.
Erscheinungsjahr
Zeitschriftentitel
Journal of Mathematical Physics
Band
55
Ausgabe
8
ISSN
PUB-ID

Zitieren

Daletskii A, Kondratiev Y, Kozitsky Y, Pasurek T. Gibbs states on random configurations. Journal of Mathematical Physics. 2014;55(8).
Daletskii, A., Kondratiev, Y., Kozitsky, Y., & Pasurek, T. (2014). Gibbs states on random configurations. Journal of Mathematical Physics, 55(8). doi:10.1063/1.4891992
Daletskii, A., Kondratiev, Y., Kozitsky, Y., and Pasurek, T. (2014). Gibbs states on random configurations. Journal of Mathematical Physics 55.
Daletskii, A., et al., 2014. Gibbs states on random configurations. Journal of Mathematical Physics, 55(8).
A. Daletskii, et al., “Gibbs states on random configurations”, Journal of Mathematical Physics, vol. 55, 2014.
Daletskii, A., Kondratiev, Y., Kozitsky, Y., Pasurek, T.: Gibbs states on random configurations. Journal of Mathematical Physics. 55, (2014).
Daletskii, Alexei, Kondratiev, Yuri, Kozitsky, Yuri, and Pasurek, Tatiana. “Gibbs states on random configurations”. Journal of Mathematical Physics 55.8 (2014).