Gibbs states on random configurations
Daletskii, Alexei
Kondratiev, Yuri
Kozitsky, Yuri
Pasurek, Tatiana
Gibbs states of a spin system with the single-spin space S = R-m and unbounded pair interactions are studied. The spins are attached to the points of a realization gamma of a random point process in R-n. Under certain conditions on the model parameters we prove that, for almost all gamma, the set G(S-gamma) of all Gibbs states is nonempty and its elements have support properties, explicitly described in the paper. We also show the existence of measurable selections. gamma bar right arrow nu(gamma) is an element of(S-gamma) (random Gibbs measures) and the corresponding averaged moment estimates. (C) 2014 AIP Publishing LLC.
American Institute Of Physics
2014
info:eu-repo/semantics/article
doc-type:article
text
https://pub.uni-bielefeld.de/record/2703487
Daletskii A, Kondratiev Y, Kozitsky Y, Pasurek T. Gibbs states on random configurations. <em>Journal of Mathematical Physics</em>. 2014;55(8).
eng
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4891992
info:eu-repo/semantics/altIdentifier/issn/0022-2488
info:eu-repo/semantics/altIdentifier/wos/000342848900064
info:eu-repo/semantics/closedAccess