Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor

Mikhaylov G, Klimpel D, Schaschke N, Mikac U, Vizovisek M, Fonovic M, Turk V, Turk B, Vasiljeva O (2014)
Angewandte Chemie International Edition 53(38): 10077-10081.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mikhaylov, G.; Klimpel, DennisUniBi; Schaschke, NorbertUniBi; Mikac, U.; Vizovisek, M.; Fonovic, M.; Turk, V.; Turk, Boris; Vasiljeva, Olga
Abstract / Bemerkung
Cathepsin B (CtsB) is a lysosomal cysteine proteinase that is specifically translocated to the extracellular milieu during cancer progression. The development of a lipidated CtsB inhibitor incorporated into the envelope of a liposomal nanocarrier (LNC-NS-629) is described. Ex vivo and in vivo studies confirmed selective targeting and internalization of LNC-NS-629 by tumor and stromal cells, thus validating CtsB targeting as a highly promising approach to cancer diagnosis and treatment.
Stichworte
tumor microenvironment; theranostics; drug delivery; cancer; cathepsin B
Erscheinungsjahr
2014
Zeitschriftentitel
Angewandte Chemie International Edition
Band
53
Ausgabe
38
Seite(n)
10077-10081
ISSN
1433-7851
Page URI
https://pub.uni-bielefeld.de/record/2703442

Zitieren

Mikhaylov G, Klimpel D, Schaschke N, et al. Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor. Angewandte Chemie International Edition. 2014;53(38):10077-10081.
Mikhaylov, G., Klimpel, D., Schaschke, N., Mikac, U., Vizovisek, M., Fonovic, M., Turk, V., et al. (2014). Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor. Angewandte Chemie International Edition, 53(38), 10077-10081. doi:10.1002/anie.201402305
Mikhaylov, G., Klimpel, D., Schaschke, N., Mikac, U., Vizovisek, M., Fonovic, M., Turk, V., Turk, B., and Vasiljeva, O. (2014). Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor. Angewandte Chemie International Edition 53, 10077-10081.
Mikhaylov, G., et al., 2014. Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor. Angewandte Chemie International Edition, 53(38), p 10077-10081.
G. Mikhaylov, et al., “Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor”, Angewandte Chemie International Edition, vol. 53, 2014, pp. 10077-10081.
Mikhaylov, G., Klimpel, D., Schaschke, N., Mikac, U., Vizovisek, M., Fonovic, M., Turk, V., Turk, B., Vasiljeva, O.: Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor. Angewandte Chemie International Edition. 53, 10077-10081 (2014).
Mikhaylov, G., Klimpel, Dennis, Schaschke, Norbert, Mikac, U., Vizovisek, M., Fonovic, M., Turk, V., Turk, Boris, and Vasiljeva, Olga. “Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsin B Inhibitor”. Angewandte Chemie International Edition 53.38 (2014): 10077-10081.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment.
Vidak E, Javoršek U, Vizovišek M, Turk B., Cells 8(3), 2019
PMID: 30897858
Trends towards Biomimicry in Theranostics.
Evangelopoulos M, Parodi A, Martinez JO, Tasciotti E., Nanomaterials (Basel) 8(9), 2018
PMID: 30134564
Cathepsin nanofiber substrates as potential agents for targeted drug delivery.
Ben-Nun Y, Fichman G, Adler-Abramovich L, Turk B, Gazit E, Blum G., J Control Release 257(), 2017
PMID: 27908759
Theranostic Probes for Targeting Tumor Microenvironment: An Overview.
Sikkandhar MG, Nedumaran AM, Ravichandar R, Singh S, Santhakumar I, Goh ZC, Mishra S, Archunan G, Gulyás B, Padmanabhan P., Int J Mol Sci 18(5), 2017
PMID: 28492519
Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin.
Kramer L, Renko M, Završnik J, Turk D, Seeger MA, Vasiljeva O, Grütter MG, Turk V, Turk B., Theranostics 7(11), 2017
PMID: 28824717
Nanomedicine applications in the treatment of breast cancer: current state of the art.
Wu D, Si M, Xue HY, Wong HL., Int J Nanomedicine 12(), 2017
PMID: 28860754
Protease-activated nanomaterials for targeted cancer theranostics.
Chan YC, Hsiao M., Nanomedicine (Lond) 12(18), 2017
PMID: 28814163
Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges.
Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH., Protoplasma 252(3), 2015
PMID: 25398648
Targeting Cathepsin B for Cancer Therapies.
Ruan H, Hao S, Young P, Zhang H., Horiz Cancer Res 56(), 2015
PMID: 26623174
Proteomic Identification of Cysteine Cathepsin Substrates Shed from the Surface of Cancer Cells.
Sobotič B, Vizovišek M, Vidmar R, Van Damme P, Gocheva V, Joyce JA, Gevaert K, Turk V, Turk B, Fonović M., Mol Cell Proteomics 14(8), 2015
PMID: 26081835
Cathepsin S: therapeutic, diagnostic, and prognostic potential.
Wilkinson RD, Williams R, Scott CJ, Burden RE., Biol Chem 396(8), 2015
PMID: 25872877

24 References

Daten bereitgestellt von Europe PubMed Central.

Strategies for MMP inhibition in cancer: innovations for the post-trial era.
Overall CM, Lopez-Otin C., Nat. Rev. Cancer 2(9), 2002
PMID: 12209155
A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery.
Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, Nariai K, Mitsunaga M, Yanagisawa S, Kashiwagi H, Mabashi Y, Yumoto Y, Hoshina S, Fujise K, Tada N., Nat Nanotechnol 4(9), 2009
PMID: 19734934
Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes.
Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M., Nat. Chem. Biol. 3(10), 2007
PMID: 17828252
Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice.
Vasiljeva O, Korovin M, Gajda M, Brodoefel H, Bojic L, Kruger A, Schurigt U, Sevenich L, Turk B, Peters C, Reinheckel T., Oncogene 27(30), 2008
PMID: 18345026
Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment.
Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O., Nat Nanotechnol 6(9), 2011
PMID: 21822252
Proteases: multifunctional enzymes in life and disease.
Lopez-Otin C, Bond JS., J. Biol. Chem. 283(45), 2008
PMID: 18650443
Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy.
Ansari C, Tikhomirov GA, Hong SH, Falconer RA, Loadman PM, Gill JH, Castaneda R, Hazard FK, Tong L, Lenkov OD, Felsher DW, Rao J, Daldrup-Link HE., Small 10(3), 2013
PMID: 24038954
The many spaces of uPAR: delivery of theranostic agents and nanobins to multiple tumor compartments through a single target.
O'Halloran TV, Ahn R, Hankins P, Swindell E, Mazar AP., Theranostics 3(7), 2013
PMID: 23843897
Targeting the tumor microenvironment for cancer therapy.
Sounni NE, Noel A., Clin. Chem. 59(1), 2012
PMID: 23193058
Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer.
Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, Bell-McGuinn KM, Zabor EC, Brogi E, Joyce JA., Genes Dev. 25(23), 2011
PMID: 22156207
Epoxysuccinyl peptide-derived cathepsin B inhibitors: modulating membrane permeability by conjugation with the C-terminal heptapeptide segment of penetratin.
Schaschke N, Deluca D, Assfalg-Machleidt I, Hohneke C, Sommerhoff CP, Machleidt W., Biol. Chem. 383(5), 2002
PMID: 12108551
Mutant K-ras regulates cathepsin B localization on the surface of human colorectal carcinoma cells.
Cavallo-Medved D, Dosescu J, Linebaugh BE, Sameni M, Rudy D, Sloane BF., Neoplasia 5(6), 2003
PMID: 14965444
Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis.
Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D., Cancer Cell 5(5), 2004
PMID: 15144952
Lysosomal cathepsin B: correlation with metastatic potential.
Sloane BF, Dunn JR, Honn KV., Science 212(4499), 1981
PMID: 7233209
Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer.
Vasiljeva O, Papazoglou A, Kruger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, Peters C, Reinheckel T., Cancer Res. 66(10), 2006
PMID: 16707449
Targeting proteases: successes, failures and future prospects.
Turk B., Nat Rev Drug Discov 5(9), 2006
PMID: 16955069
Cysteine cathepsins: multifunctional enzymes in cancer.
Mohamed MM, Sloane BF., Nat. Rev. Cancer 6(10), 2006
PMID: 16990854
Emerging roles of cysteine cathepsins in disease and their potential as drug targets.
Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B., Curr. Pharm. Des. 13(4), 2007
PMID: 17311556
Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes.
Mohamed MM, Cavallo-Medved D, Rudy D, Anbalagan A, Moin K, Sloane BF., Cell. Physiol. Biochem. 25(2-3), 2010
PMID: 20110692
Epoxysuccinyl peptide-derived affinity labels for cathepsin B.
Schaschke N, Assfalg-Machleidt I, Lassleben T, Sommerhoff CP, Moroder L, Machleidt W., FEBS Lett. 482(1-2), 2000
PMID: 11018529

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24975267
PubMed | Europe PMC

Suchen in

Google Scholar