Redox regulation of transcription factors in plant stress acclimation and development

Dietz K-J (2014)
Antioxidants & redox signaling 21(9): 1356-1372.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
UNLABELLED: Abstract Significance: The redox regulatory signaling network of the plant cell controls and co-regulates transcriptional activities, thereby enabling adjustment of metabolism and development in response to environmental cues, including abiotic stress. RECENT ADVANCES: Our rapidly expanding knowledge on redox regulation of plant transcription is driven by methodological advancements such as sensitive redox proteomics and in silico predictions in combination with classical targeted genetic and molecular approaches, often in Arabidopsis thaliana. Thus, transcription factors (TFs) are both direct and indirect targets of redox-dependent activity modulation. Redox control of TF activity involves conformational switching, nucleo-cytosolic partitioning, assembly with coregulators, metal-S-cluster regulation, redox control of upstream signaling elements, and proteolysis. CRITICAL ISSUES: While the significance of redox regulation of transcription is well established for prokaryotes and non-plant eukaryotes, the momentousness of redox-dependent control of transcription in plants still receives insufficient awareness and, therefore, is discussed in detail in this review. FUTURE DIRECTIONS: Improved proteome sensitivity will enable characterization of low abundant proteins and to simultaneously address the various post-translational modifications such as nitrosylation, hydroxylation, and glutathionylation. Combining such approaches by gradually increasing biotic and abiotic stress strength is expected to result in a systematic understanding of redox regulation. In the end, only the combination of in vivo, ex vivo, and in vitro results will provide conclusive pictures on the rather complex mechanism of redox regulation of transcription. Antioxid. Redox Signal. 21, 1356-1372.
Antioxidants & redox signaling
Page URI


Dietz K-J. Redox regulation of transcription factors in plant stress acclimation and development. Antioxidants & redox signaling. 2014;21(9):1356-1372.
Dietz, K. - J. (2014). Redox regulation of transcription factors in plant stress acclimation and development. Antioxidants & redox signaling, 21(9), 1356-1372. doi:10.1089/ars.2013.5672
Dietz, Karl-Josef. 2014. “Redox regulation of transcription factors in plant stress acclimation and development”. Antioxidants & redox signaling 21 (9): 1356-1372.
Dietz, K. - J. (2014). Redox regulation of transcription factors in plant stress acclimation and development. Antioxidants & redox signaling 21, 1356-1372.
Dietz, K.-J., 2014. Redox regulation of transcription factors in plant stress acclimation and development. Antioxidants & redox signaling, 21(9), p 1356-1372.
K.-J. Dietz, “Redox regulation of transcription factors in plant stress acclimation and development”, Antioxidants & redox signaling, vol. 21, 2014, pp. 1356-1372.
Dietz, K.-J.: Redox regulation of transcription factors in plant stress acclimation and development. Antioxidants & redox signaling. 21, 1356-1372 (2014).
Dietz, Karl-Josef. “Redox regulation of transcription factors in plant stress acclimation and development”. Antioxidants & redox signaling 21.9 (2014): 1356-1372.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing.
Schmidt A, von Woedtke T, Vollmar B, Hasse S, Bekeschus S., Theranostics 9(4), 2019
PMID: 30867816
The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant.
Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y., Biomed Res Int 2019(), 2019
PMID: 31205950
Brassinosteroid-mediated apoplastic H2 O2 -glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato.
Xia XJ, Fang PP, Guo X, Qian XJ, Zhou J, Shi K, Zhou YH, Yu JQ., Plant Cell Environ 41(5), 2018
PMID: 28776692
Reactive Oxygen Species in Plant Signaling.
Waszczak C, Carmody M, Kangasjärvi J., Annu Rev Plant Biol 69(), 2018
PMID: 29489394
Thiol Based Redox Signaling in Plant Nucleus.
Martins L, Trujillo-Hernandez JA, Reichheld JP., Front Plant Sci 9(), 2018
PMID: 29892308
ROS and RNS: key signalling molecules in plants.
Turkan I., J Exp Bot 69(14), 2018
PMID: 29931350
The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Mueller SM, Dietz KJ., Elife 7(), 2018
PMID: 30311601
The release of dormancy, a wake-up call for seeds to germinate.
Née G, Xiang Y, Soppe WJ., Curr Opin Plant Biol 35(), 2017
PMID: 27710774
Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L.
Keith BK, Burns EE, Bothner B, Carey CC, Mazurie AJ, Hilmer JK, Biyiklioglu S, Budak H, Dyer WE., Pest Manag Sci 73(11), 2017
PMID: 28485049
Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors.
Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S., Plant Direct 1(6), 2017
PMID: 31245678
Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses.
Srivastava AK, Penna S, Nguyen DV, Tran LS., Crit Rev Biotechnol 36(3), 2016
PMID: 25430890
A year (2014-2015) of plants in Proteomics journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists.
Sanchez-Lucas R, Mehta A, Valledor L, Cabello-Hurtado F, Romero-Rodrıguez MC, Simova-Stoilova L, Demir S, Rodriguez-de-Francisco LE, Maldonado-Alconada AM, Jorrin-Prieto AL, Jorrín-Novo JV., Proteomics 16(5), 2016
PMID: 26621614
Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants.
Lima-Melo Y, Carvalho FE, Martins MO, Passaia G, Sousa RH, Neto MC, Margis-Pinheiro M, Silveira JA., J Integr Plant Biol 58(8), 2016
PMID: 26799169
Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity.
Cuypers A, Hendrix S, Amaral Dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E., Front Plant Sci 7(), 2016
PMID: 27199999
"Feature Detection" vs. "Predictive Coding" Models of Plant Behavior.
Calvo P, Baluška F, Sims A., Front Psychol 7(), 2016
PMID: 27757094
ROS-Mediated Inhibition of S-nitrosoglutathione Reductase Contributes to the Activation of Anti-oxidative Mechanisms.
Kovacs I, Holzmeister C, Wirtz M, Geerlof A, Fröhlich T, Römling G, Kuruthukulangarakoola GT, Linster E, Hell R, Arnold GJ, Durner J, Lindermayr C., Front Plant Sci 7(), 2016
PMID: 27891135
Oxidative post-translational modifications of cysteine residues in plant signal transduction.
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F., J Exp Bot 66(10), 2015
PMID: 25750423
Redox Strategies for Crop Improvement.
Kerchev P, De Smet B, Waszczak C, Messens J, Van Breusegem F., Antioxid Redox Signal 23(14), 2015
PMID: 26062101

133 References

Daten bereitgestellt von Europe PubMed Central.

The language of nitric oxide signalling.
Baudouin E., Plant Biol (Stuttg) 13(2), 2010
PMID: 21309969
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.
Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP., J. Biol. Chem. 282(2), 2006
PMID: 17105724
Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance.
Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP., Plant J. 47(6), 2006
PMID: 16889645
Basic principles and emerging concepts in the redox control of transcription factors.
Brigelius-Flohe R, Flohe L., Antioxid. Redox Signal. 15(8), 2011
PMID: 21194351
Redox regulation: a broadening horizon.
Buchanan BB, Balmer Y., Annu Rev Plant Biol 56(), 2005
PMID: 15862094
Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277.
Buzek J, Latonen L, Kurki S, Peltonen K, Laiho M., Nucleic Acids Res. 30(11), 2002
PMID: 12034820
RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip.
Cheng JC, Seeley KA, Sung ZR., Plant Physiol. 107(2), 1995
PMID: 7724670
Biochemical properties of poplar thioredoxin z.
Chibani K, Tarrago L, Schurmann P, Jacquot JP, Rouhier N., FEBS Lett. 585(7), 2011
PMID: 21385584
Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations.
Cho Y, Gorina S, Jeffrey PD, Pavletich NP., Science 265(5170), 1994
PMID: 8023157
Glutathione- and glutaredoxin-dependent reduction of methionine sulfoxide reductase A.
Couturier J, Vignols F, Jacquot JP, Rouhier N., FEBS Lett. 586(21), 2012
PMID: 23022439
Redox regulation of root apical meristem organization: connecting root development to its environment.
De Tullio MC, Jiang K, Feldman LJ., Plant Physiol. Biochem. 48(5), 2009
PMID: 20031434

Hubs and bottlenecks in plant molecular signalling networks.
Dietz KJ, Jacquot JP, Harris G., New Phytol. 188(4), 2010
PMID: 20958306
A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts.
Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, Luan S., Proc. Natl. Acad. Sci. U.S.A. 105(42), 2008
PMID: 18845687
Factors affecting protein thiol reactivity and specificity in peroxide reduction.
Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A., Chem. Res. Toxicol. 24(4), 2011
PMID: 21391663
Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.
Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L., Nature 422(6930), 2003
PMID: 12660786
Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers.
Forman HJ, Fukuto JM, Torres M., Am. J. Physiol., Cell Physiol. 287(2), 2004
PMID: 15238356
Ascorbate and glutathione: the heart of the redox hub.
Foyer CH, Noctor G., Plant Physiol. 155(1), 2011
PMID: 21205630
Type 2C protein phosphatases in plants.
Fuchs S, Grill E, Meskiene I, Schweighofer A., FEBS J. 280(2), 2012
PMID: 22726910
Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants.
Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ., Nature 479(7373), 2011
PMID: 22020279
Regulation of translation by hydrogen peroxide.
Grant CM., Antioxid. Redox Signal. 15(1), 2011
PMID: 21126188
Redox Biology on the rise.
Herrmann JM, Dick TP., Biol. Chem. 393(9), 2012
PMID: 22944698
AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1.
Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J., Proc. Natl. Acad. Sci. U.S.A. 94(8), 1997
PMID: 9108029
Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin.
Hong L, Tang D, Zhu K, Wang K, Li M, Cheng Z., Plant Cell 24(2), 2012
PMID: 22319054
Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions.
Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI., Genes Dev. 24(16), 2010
PMID: 20713515
Chloroplast redox imbalance governs phenotypic plasticity: the "grand design of photosynthesis" revisited.
Huner NP, Bode R, Dahal K, Hollis L, Rosso D, Krol M, Ivanov AG., Front Plant Sci 3(), 2012
PMID: 23230444

bZIP transcription factors in Arabidopsis.
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F; bZIP Research Group., Trends Plant Sci. 7(3), 2002
PMID: 11906833
Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light.
Jung HS, Crisp PA, Estavillo GM, Cole B, Hong F, Mockler TC, Pogson BJ, Chory J., Proc. Natl. Acad. Sci. U.S.A. 110(35), 2013
PMID: 23918368
Light acclimation, retrograde signalling, cell death and immune defences in plants.
Karpinski S, Szechynska-Hebda M, Wituszynska W, Burdiak P., Plant Cell Environ. 36(4), 2012
PMID: 23046215
Hypoxia triggers meiotic fate acquisition in maize.
Kelliher T, Walbot V., Science 337(6092), 2012
PMID: 22822150
Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway.
Kim C, Meskauskiene R, Zhang S, Lee KP, Lakshmanan Ashok M, Blajecka K, Herrfurth C, Feussner I, Apel K., Plant Cell 24(7), 2012
PMID: 22797473
OxyR: a molecular code for redox-related signaling.
Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, Stamler JS., Cell 109(3), 2002
PMID: 12015987
Redox regulation of c-Jun DNA binding by reversible S-glutathiolation.
Klatt P, Molina EP, De Lacoba MG, Padilla CA, Martinez-Galesteo E, Barcena JA, Lamas S., FASEB J. 13(12), 1999
PMID: 10463938
Role of zinc-coordination and of the glutathione redox couple in the redox susceptibility of human transcription factor Sp1.
Knoepfel L, Steinkuhler C, Carri MT, Rotilio G., Biochem. Biophys. Res. Commun. 201(2), 1994
PMID: 8003025
Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.
Kovtun Y, Chiu WL, Tena G, Sheen J., Proc. Natl. Acad. Sci. U.S.A. 97(6), 2000
PMID: 10717008
Singlet oxygen production in photosystem II and related protection mechanism.
Krieger-Liszkay A, Fufezan C, Trebst A., Photosyn. Res. 98(1-3), 2008
PMID: 18780159
Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path.
Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, Ryu SE., Nat. Struct. Mol. Biol. 11(12), 2004
PMID: 15543158

Purification and characterization of ZmRIP1, a novel reductant-inhibited protein tyrosine phosphatase from maize.
Li B, Zhao Y, Liang L, Ren H, Xing Y, Chen L, Sun M, Wang Y, Han Y, Jia H, Huang C, Wu Z, Jia W., Plant Physiol. 159(2), 2012
PMID: 22529284
Molecular elements of low‐oxygen signaling in plants
Licausi F., Physiol Plant 148(1), 2013
PMID: IND500650395
Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization.
Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT., Nature 479(7373), 2011
PMID: 22020282
The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
Lindahl M, Mata-Cabana A, Kieselbach T., Antioxid. Redox Signal. 14(12), 2011
PMID: 21275844
Proteomic identification of S-nitrosylated proteins in Arabidopsis.
Lindermayr C, Saalbach G, Durner J., Plant Physiol. 137(3), 2005
PMID: 15734904
Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide.
Lindermayr C, Sell S, Muller B, Leister D, Durner J., Plant Cell 22(8), 2010
PMID: 20716698
FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana.
Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K., Proc. Natl. Acad. Sci. U.S.A. 98(22), 2001
PMID: 11606728
The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.
Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R., Sci Signal 2(84), 2009
PMID: 19690331
Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., Plant Cell Environ. 33(4), 2009
PMID: 19712065
Redox modulation of Rubisco conformation and activity through its cysteine residues.
Moreno J, Garcia-Murria MJ, Marin-Navarro J., J. Exp. Bot. 59(7), 2008
PMID: 18212026
Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance.
Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL., Plant J. 48(5), 2006
PMID: 17092320
Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene.
Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C., Mol. Plant Microbe Interact. 23(3), 2010
PMID: 20121455
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730

Nakano, Plant Cell Physiol 28(), 1987
Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H₂O₂ generation and stress tolerance.
Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ., Plant Cell Environ. 36(4), 2012
PMID: 22994632
Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?
Nover L, Bharti K, Doring P, Mishra SK, Ganguli A, Scharf KD., Cell Stress Chaperones 6(3), 2001
PMID: 11599559
Redox-dependent regulation of nuclear import of the glucocorticoid receptor.
Okamoto K, Tanaka H, Ogawa H, Makino Y, Eguchi H, Hayashi S, Yoshikawa N, Poellinger L, Umesono K, Makino I., J. Biol. Chem. 274(15), 1999
PMID: 10187825
Reactive oxygen species and hormonal control of cell death.
Overmyer K, Brosche M, Kangasjarvi J., Trends Plant Sci. 8(7), 2003
PMID: 12878018
Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.
Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, Esker AR, Tholl D, Cimini D, Ellerstrom M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23671085
Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ., Anal. Chem. 85(7), 2013
PMID: 23438843
Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation.
Pesaresi P, Hertle A, Pribil M, Kleine T, Wagner R, Strissel H, Ihnatowicz A, Bonardi V, Scharfenberg M, Schneider A, Pfannschmidt T, Leister D., Plant Cell 21(8), 2009
PMID: 19706797
The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2.
Plafker KS, Nguyen L, Barneche M, Mirza S, Crawford D, Plafker SM., J. Biol. Chem. 285(30), 2010
PMID: 20484052
Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site.
Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J., J. Biol. Chem. 277(22), 2002
PMID: 11904290
Mitochondrial retrograde regulation in plants.
Rhoads DM, Subbaiah CC., Mitochondrion 7(3), 2007
PMID: 17320492
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
Identification of plant glutaredoxin targets.
Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G., Antioxid. Redox Signal. 7(7-8), 2005
PMID: 15998247
A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses.
Salleh FM, Evans K, Goodall B, Machin H, Mowla SB, Mur LA, Runions J, Theodoulou FL, Foyer CH, Rogers HJ., Plant Cell Environ. 35(2), 2011
PMID: 21736589
Prediction of reversibly oxidized protein cysteine thiols using protein structure properties.
Sanchez R, Riddle M, Woo J, Momand J., Protein Sci. 17(3), 2008
PMID: 18287280
The plant heat stress transcription factor (Hsf) family: structure, function and evolution.
Scharf KD, Berberich T, Ebersberger I, Nover L., Biochim. Biophys. Acta 1819(2), 2011
PMID: 22033015
Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation.
Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H., Biochem. Biophys. Res. Commun. 361(4), 2007
PMID: 17686455
The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes.
Shaikhali J, Heiber I, Seidel T, Stroher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M., BMC Plant Biol. 8(), 2008
PMID: 18439303
Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis.
Shaikhali J, Noren L, de Dios Barajas-Lopez J, Srivastava V, Konig J, Sauer UH, Wingsle G, Dietz KJ, Strand A., J. Biol. Chem. 287(33), 2012
PMID: 22718771
Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii.
Shao N, Beck CF, Lemaire SD, Krieger-Liszkay A., Planta 228(6), 2008
PMID: 18781324
ROS-talk - how the apoplast, the chloroplast, and the nucleus get the message through.
Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjarvi J., Front Plant Sci 3(), 2012
PMID: 23293644
The biological roles of glutaredoxins.
Stroher E, Millar AH., Biochem. J. 446(3), 2012
PMID: 22928493
A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus.
Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L., Nat Commun 2(), 2011
PMID: 21934661
Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins.
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X., Science 321(5891), 2008
PMID: 18635760
The N-end rule pathway.
Tasaki T, Sriram SM, Park KS, Kwon YT., Annu. Rev. Biochem. 81(), 2012
PMID: 22524314
Stress homeostasis - the redox and auxin perspective.
Tognetti VB, Muhlenbock P, Van Breusegem F., Plant Cell Environ. 35(2), 2011
PMID: 21443606
Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants.
Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ., Plant Physiol. 148(2), 2008
PMID: 18676660
Comparison of intact Arabidopsis thaliana leaf transcript profiles during treatment with inhibitors of mitochondrial electron transport and TCA cycle.
Umbach AL, Zarkovic J, Yu J, Ruckle ME, McIntosh L, Hock JJ, Bingham S, White SJ, George RM, Subbaiah CC, Rhoads DM., PLoS ONE 7(9), 2012
PMID: 23028523
Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis.
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inze D, Van Breusegem F., Plant Physiol. 139(2), 2005
PMID: 16183842
The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development.
Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR., Plant Cell 12(1), 2000
PMID: 10634910
Redox modulation of plant developmental regulators from the class I TCP transcription factor family.
Viola IL, Guttlein LN, Gonzalez DH., Plant Physiol. 162(3), 2013
PMID: 23686421
Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, Talalay P., Proc. Natl. Acad. Sci. U.S.A. 101(7), 2004
PMID: 14764894
Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis.
Wang H, Wang S, Lu Y, Alvarez S, Hicks LM, Ge X, Xia Y., J. Proteome Res. 11(1), 2011
PMID: 22050424
Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA.
Watanabe S, Kita A, Kobayashi K, Miki K., Proc. Natl. Acad. Sci. U.S.A. 105(11), 2008
PMID: 18334645
Oxidation of zinc finger transcription factors: physiological consequences.
Webster KA, Prentice H, Bishopric NH., Antioxid. Redox Signal. 3(4), 2001
PMID: 11554443
Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves.
Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P., Plant Physiol. 145(3), 2007
PMID: 17873090
ABI4: versatile activator and repressor.
Wind JJ, Peviani A, Snel B, Hanson J, Smeekens SC., Trends Plant Sci. 18(3), 2012
PMID: 23182343
A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors.
Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S., J. Mol. Biol. 337(1), 2004
PMID: 15001351

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 24182193
PubMed | Europe PMC

Suchen in

Google Scholar