Towards molecular biomarkers for biogas production from lignocellulose-rich substrates

Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Perez CM (2014)
Anaerobe 29: 10-21.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lebuhn, Michael; Hanreich, Angelika; Klocke, Michael; Schlüter, AndreasUniBi ; Bauer, Christoph; Perez, Carmen Marin
Abstract / Bemerkung
Biogas production from lignocellulose-rich agricultural residues is gaining increasingly importance in sustainable energy production. Hydrolysis/acidogenesis (H/A) of lignocellulose as the initial rate-limiting step deserves particular optimization. A mixture of straw/hay was methanized applying two-phase digester systems with an initial H/A reactor and a one-stage system at different, meso- and thermophilic temperatures. H/A was intensified with increasing pH values and increasing temperature. H/A fermenters, however, were prone to switch to methanogenic systems at these conditions. Substrate turnover was accelerated in the bi-phasic process but did not reach the methanation efficiency of the single-stage digestion. There was no indication that two different cellulolytic inocula could establish in the given process. Bacterial communities were analyzed applying conventional amplicon clone sequencing targeting the hypervariable 16S rRNA gene region V6-V8 and by metagenome analyses applying direct DNA pyrosequencing without a PCR step. Corresponding results suggested that PCR did not introduce a bias but offered better phylogenetic resolution. Certain Clostridium IV and Prevotella members were most abundant in the H/A system operated at 38 degrees C, certain Clostridium III and Lachnospiraceae bacteria in the 45 degrees C, and certain Clostridium IV and Thermohydrogenium/Thermoanaerobacterium members in the 55 degrees C H/A system. Clostridium III representatives, Lachnospiraceae and Thermotogae dominated in the thermophilic single-stage system, in which also a higher portion of known syntrophic acetate oxidizers was found. Specific (RT-)qPCR systems were designed and applied for the most significant and abundant populations to assess their activity in the different digestion systems. The RT-qPCR results agreed with the DNA based community profiles obtained at the different temperatures. Up to 10(12) 16S rRNA copies mL(-1) were determined in H/A fermenters with prevalence of rRNA of a Ruminococcaceae subgroup. Besides, Thermohydrogenium/Thermoanaerobacterium rRNA prevailed at thermophilic and Prevotellaceae rRNA at mesophilic conditions. The developed (RT)-qPCR systems can be used as biomarkers to optimize biogas production from straw/hay and possibly other lignocellulosic substrates. (C) 2014 Elsevier Ltd. All rights reserved.
Stichworte
Biomarker; Microbial community analysis; Bioindicator; Metagenome; Hydrolysis/acidogenesis; Biogas
Erscheinungsjahr
2014
Zeitschriftentitel
Anaerobe
Band
29
Seite(n)
10-21
ISSN
1075-9964
Page URI
https://pub.uni-bielefeld.de/record/2690688

Zitieren

Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Perez CM. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe. 2014;29:10-21.
Lebuhn, M., Hanreich, A., Klocke, M., Schlüter, A., Bauer, C., & Perez, C. M. (2014). Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 29, 10-21. doi:10.1016/j.anaerobe.2014.04.006
Lebuhn, Michael, Hanreich, Angelika, Klocke, Michael, Schlüter, Andreas, Bauer, Christoph, and Perez, Carmen Marin. 2014. “Towards molecular biomarkers for biogas production from lignocellulose-rich substrates”. Anaerobe 29: 10-21.
Lebuhn, M., Hanreich, A., Klocke, M., Schlüter, A., Bauer, C., and Perez, C. M. (2014). Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe 29, 10-21.
Lebuhn, M., et al., 2014. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 29, p 10-21.
M. Lebuhn, et al., “Towards molecular biomarkers for biogas production from lignocellulose-rich substrates”, Anaerobe, vol. 29, 2014, pp. 10-21.
Lebuhn, M., Hanreich, A., Klocke, M., Schlüter, A., Bauer, C., Perez, C.M.: Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe. 29, 10-21 (2014).
Lebuhn, Michael, Hanreich, Angelika, Klocke, Michael, Schlüter, Andreas, Bauer, Christoph, and Perez, Carmen Marin. “Towards molecular biomarkers for biogas production from lignocellulose-rich substrates”. Anaerobe 29 (2014): 10-21.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants.
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A., Appl Microbiol Biotechnol 102(12), 2018
PMID: 29713790
Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues.
Tsapekos P, Kougias PG, Vasileiou SA, Treu L, Campanaro S, Lyberatos G, Angelidaki I., Bioresour Technol 234(), 2017
PMID: 28340440
Is the continuous two-stage anaerobic digestion process well suited for all substrates?
Lindner J, Zielonka S, Oechsner H, Lemmer A., Bioresour Technol 200(), 2016
PMID: 26519699
DNA and RNA Extraction and Quantitative Real-Time PCR-Based Assays for Biogas Biocenoses in an Interlaboratory Comparison.
Lebuhn M, Derenkó J, Rademacher A, Helbig S, Munk B, Pechtl A, Stolze Y, Prowe S, Schwarz WH, Schlüter A, Liebl W, Klocke M., Bioengineering (Basel) 3(1), 2016
PMID: 28952569
Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.
Cibis KG, Gneipel A, König H., J Biotechnol 220(), 2016
PMID: 26779817
Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy.
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I., Biotechnol Biofuels 9(), 2016
PMID: 26839589
Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing.
Ratti RP, Delforno TP, Okada DY, Varesche MB, Varesche MB., Microbiol Res 173(), 2015
PMID: 25801966
Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant.
Maus I, Cibis KG, Wibberg D, Winkler A, Stolze Y, König H, Pühler A, Schlüter A., J Biotechnol 203(), 2015
PMID: 25801333
Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure.
Sun L, Pope PB, Eijsink VG, Schnürer A., Microb Biotechnol 8(5), 2015
PMID: 26152665

43 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2010
Germany's energy gamble
Schiermeier, Nature 496(11), 2013

AUTHOR UNKNOWN, 0
Methanogenic archaea: ecologically relevant differences in energy conservation.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R., Nat. Rev. Microbiol. 6(8), 2008
PMID: 18587410
Improved sludge gasification by two-phase anaerobic digestion
Ghosh, J Environ Eng 113(6), 1987
Biogas production: current state and perspectives.
Weiland P., Appl. Microbiol. Biotechnol. 85(4), 2009
PMID: 19777226
Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops
Cirne, J Appl Microbiol 103(), 2007
Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass.
Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B., Syst. Appl. Microbiol. 31(3), 2008
PMID: 18501543
Development of microbial populations in the anaerobic hydrolysis of grass silage for methane production.
Wang H, Vuorela M, Keranen AL, Lehtinen TM, Lensu A, Lehtomaki A, Rintala J., FEMS Microbiol. Ecol. 72(3), 2010
PMID: 20337709
Preferential ligation during TA-cloning of multitemplate PCR products—a factor causing bias in microbial community structure analysis
Palatinszky, J Microbiol Meth. 85(2), 2011
Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing.
Lee CK, Herbold CW, Polson SW, Wommack KE, Williamson SJ, McDonald IR, Cary SC., PLoS ONE 7(9), 2012
PMID: 22970184
Mikrobiologie der Hydrolyse von Pflanzenfasern in Biogasanlagen
Köllmeier, Bornim Agrar Ber 79(), 2012

Marín, 2013
Optimierung der hydrolyse durch gezielte pH-Wert Steuerung
Hahn, Bornim, Agrar Ber 79(), 2012
Using quantitative real-time PCR to determine the hygienic status of cattle manure.
Lebuhn M, Effenberger M, Gronauer A, Wilderer PA, Wuertz S., Water Sci. Technol. 48(4), 2003
PMID: 14531427
Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage
Munk, Eng Life Sci 10(), 2010
A metabolic quotient for methanogenic Archaea.
Munk B, Bauer C, Gronauer A, Lebuhn M., Water Sci. Technol. 66(11), 2012
PMID: 23032759
A renaissance for the pioneering 16S rRNA gene.
Tringe SG, Hugenholtz P., Curr. Opin. Microbiol. 11(5), 2008
PMID: 18817891
Exploring microbial diversity using 16S rRNA high-throughput methods
Armougom, J Comput. Sci Syst Biol 2(), 2009
Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds.
Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K., FEMS Microbiol. Ecol. 56(2), 2006
PMID: 16629753

Hanreich, 2013
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology
Schlüter, J Biotechnol 136(), 2008
The ribosomal database project: improved alignments and new tools for rRNA analysis
Cole, Nucl Acids Res 37(), 2009
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
Quast, Nucl Acids Res 41(D1), 2013
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
Kumar S, Nei M, Dudley J, Tamura K., Brief. Bioinformatics 9(4), 2008
PMID: 18417537
Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.
Huber T, Faulkner G, Hugenholtz P., Bioinformatics 20(14), 2004
PMID: 15073015
PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database
Ashelford, Nucl Acids Res 30(), 2002
Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation
Tang, J Biosci Bioeng 106(2), 2008
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing
Zakrzewski, J Biotech 158(), 2012
Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions.
Li T, Mazeas L, Sghir A, Leblon G, Bouchez T., Environ. Microbiol. 11(4), 2008
PMID: 19128320
Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge
Ito, Biores Technol 123(), 2012
Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2
O-Thong, Int J Hydrogen Energy 33(4), 2008
Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge.
Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K., Int. J. Syst. Evol. Microbiol. 59(Pt 7), 2009
PMID: 19542130
Isolation and characterization of Defluviitoga tunisiensis gen. nov, sp. nov., a novel thermophilic bacterium pertaining to the order Thermotogales, isolated from a mesothermic anaerobic reactor treating cheese whey in Tunisia
Hania, Int J Syst Evol Microbiol 62(), 2011
Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates.
Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S., Appl. Environ. Microbiol. 78(7), 2012
PMID: 22247168
Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.
Bengelsdorf FR, Gerischer U, Langer S, Zak M, Kazda M., FEMS Microbiol. Ecol. 84(1), 2012
PMID: 23228065

AUTHOR UNKNOWN, 0
Molecular methods for the assessment of bacterial viability
Keer, J Microbiol Meth 53(2), 2003
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24785351
PubMed | Europe PMC

Suchen in

Google Scholar