Probing SH2-domains using Inhibitor Affinity Purification (IAP)

Höfener M, Heinzlmeir S, Kuster B, Sewald N (2014)
Proteome Science 12(1): 41.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Höfener, Michael; Heinzlmeir, Stephanie; Kuster, Bernhard; Sewald, NorbertUniBi
Abstract / Bemerkung
Background Many human diseases are correlated with the dysregulation of signal transduction processes. One of the most important protein interaction domains in the context of signal transduction is the Src homology 2 (SH2) domain that binds phosphotyrosine residues. Hence, appropriate methods for the investigation of SH2 proteins are indispensable in diagnostics and medicinal chemistry. Therefore, an affinity resin for the enrichment of all SH2 proteins in one experiment would be desirable. However, current methods are unable to address all SH2 proteins simultaneously with a single compound or a small array of compounds. Results In order to overcome these limitations for the investigation of this particular protein family in future experiments, a dipeptide-derived probe has been designed, synthesized and evaluated. This probe successfully enriched 22 SH2 proteins from mixed cell lysates which contained 50 SH2 proteins. Further characterization of the SH2 binding properties of the probe using depletion and competition experiments indicated its ability to enrich complexes consisting of SH2 domain bearing regulatory PI3K subunits and catalytic phosphoinositide 3-kinase (PI3K) subunits that have no SH2 domain. Conclusion The results make this probe a promising starting point for the development of a mixed affinity resin with complete SH2 protein coverage. Moreover, the additional findings render it a valuable tool for the evaluation of PI3K complex interrupting inhibitors.
Stichworte
Mass spectrometry; Chemical proteomics; Inhibitor affinity purification; SH2 domain; PI3 kinase
Erscheinungsjahr
2014
Zeitschriftentitel
Proteome Science
Band
12
Ausgabe
1
Art.-Nr.
41
ISSN
1477-5956
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2689896

Zitieren

Höfener M, Heinzlmeir S, Kuster B, Sewald N. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Proteome Science. 2014;12(1): 41.
Höfener, M., Heinzlmeir, S., Kuster, B., & Sewald, N. (2014). Probing SH2-domains using Inhibitor Affinity Purification (IAP). Proteome Science, 12(1), 41. doi:10.1186/1477-5956-12-41
Höfener, Michael, Heinzlmeir, Stephanie, Kuster, Bernhard, and Sewald, Norbert. 2014. “Probing SH2-domains using Inhibitor Affinity Purification (IAP)”. Proteome Science 12 (1): 41.
Höfener, M., Heinzlmeir, S., Kuster, B., and Sewald, N. (2014). Probing SH2-domains using Inhibitor Affinity Purification (IAP). Proteome Science 12:41.
Höfener, M., et al., 2014. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Proteome Science, 12(1): 41.
M. Höfener, et al., “Probing SH2-domains using Inhibitor Affinity Purification (IAP)”, Proteome Science, vol. 12, 2014, : 41.
Höfener, M., Heinzlmeir, S., Kuster, B., Sewald, N.: Probing SH2-domains using Inhibitor Affinity Purification (IAP). Proteome Science. 12, : 41 (2014).
Höfener, Michael, Heinzlmeir, Stephanie, Kuster, Bernhard, and Sewald, Norbert. “Probing SH2-domains using Inhibitor Affinity Purification (IAP)”. Proteome Science 12.1 (2014): 41.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:35:49Z
MD5 Prüfsumme
524e0c22f81debcc44e00facfe952745


2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies.
Kükenshöner T, Schmit NE, Bouda E, Sha F, Pojer F, Koide A, Seeliger M, Koide S, Hantschel O., J Mol Biol 429(9), 2017
PMID: 28347651

38 References

Daten bereitgestellt von Europe PubMed Central.

Src family kinases, key regulators of signal transduction.
Parsons SJ, Parsons JT., Oncogene 23(48), 2004
PMID: 15489908
Protein kinase inhibitors: insights into drug design from structure.
Noble ME, Endicott JA, Johnson LN., Science 303(5665), 2004
PMID: 15031492
Small molecule STAT5-SH2 domain inhibitors exhibit potent antileukemia activity.
Page BD, Khoury H, Laister RC, Fletcher S, Vellozo M, Manzoli A, Yue P, Turkson J, Minden MD, Gunning PT., J. Med. Chem. 55(3), 2012
PMID: 22148584
Targeting cancer with small molecule kinase inhibitors.
Zhang J, Yang PL, Gray NS., Nat. Rev. Cancer 9(1), 2009
PMID: 19104514
Simultaneous binding of two peptidyl ligands by a SRC homology 2 domain.
Zhang Y, Zhang J, Yuan C, Hard RL, Park IH, Li C, Bell C, Pei D., Biochemistry 50(35), 2011
PMID: 21800896
Update on activities at the Universal Protein Resource (UniProt) in 2013.
UniProt Consortium., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23161681
The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling.
Liu BA, Jablonowski K, Raina M, Arce M, Pawson T, Nash PD., Mol. Cell 22(6), 2006
PMID: 16793553
Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics.
Akinleye A, Avvaru P, Furqan M, Song Y, Liu D., J Hematol Oncol 6(1), 2013
PMID: 24261963
Progress towards the development of SH2 domain inhibitors.
Kraskouskaya D, Duodu E, Arpin CC, Gunning PT., Chem Soc Rev 42(8), 2013
PMID: 23396540
Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors.
Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G., Nat. Biotechnol. 25(9), 2007
PMID: 17721511
Universal sample preparation method for proteome analysis
AUTHOR UNKNOWN, 2009
The SH2 domain interaction landscape.
Tinti M, Kiemer L, Costa S, Miller ML, Sacco F, Olsen JV, Carducci M, Paoluzi S, Langone F, Workman CT, Blom N, Machida K, Thompson CM, Schutkowski M, Brunak S, Mann M, Mayer BJ, Castagnoli L, Cesareni G., Cell Rep 3(4), 2013
PMID: 23545499
Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics.
Blagoev B, Ong SE, Kratchmarova I, Mann M., Nat. Biotechnol. 22(9), 2004
PMID: 15314609
Phosphotyrosine interactome of the ErbB-receptor kinase family
AUTHOR UNKNOWN, 2005
Phosphotyrosine mediated protein interactions of the discoidin domain receptor 1.
Lemeer S, Bluwstein A, Wu Z, Leberfinger J, Muller K, Kramer K, Kuster B., J Proteomics 75(12), 2011
PMID: 22057045
Peptide ligands of pp60(c-src) SH2 domains: a thermodynamic and structural study.
Charifson PS, Shewchuk LM, Rocque W, Hummel CW, Jordan SR, Mohr C, Pacofsky GJ, Peel MR, Rodriguez M, Sternbach DD, Consler TG., Biochemistry 36(21), 1997
PMID: 9174343
Mass spectrometry-based proteomics in preclinical drug discovery.
Schirle M, Bantscheff M, Kuster B., Chem. Biol. 19(1), 2012
PMID: 22284356
Selective GRB2 SH2 inhibitors as anti-Ras therapy.
Gay B, Suarez S, Caravatti G, Furet P, Meyer T, Schoepfer J., Int. J. Cancer 83(2), 1999
PMID: 10471533
Crystal structures of the human p56Ick SH2 domain in complex with two short phosphotyrosyl peptides at 1.0 Å and 1.8 Å resolution
AUTHOR UNKNOWN, 1996
Sequence specificity of SHP-1 and SHP-2 Src homology 2 domains. Critical roles of residues beyond the pY+3 position.
Imhof D, Wavreille AS, May A, Zacharias M, Tridandapani S, Pei D., J. Biol. Chem. 281(29), 2006
PMID: 16702225
Peptide bicycles that inhibit the Grb2 SH2 domain.
Quartararo JS, Wu P, Kritzer JA., Chembiochem 13(10), 2012
PMID: 22689355
SH2 domains recognize specific phosphopeptide sequences
AUTHOR UNKNOWN, 1993
Facile synthesis of aryl(difluoromethyl)phosphonates through CuBr-mediated cross coupling reactions of [(diethoxyphosphinyl)difluoromethyl]zinc bromide with aryl iodides
AUTHOR UNKNOWN, 1997
A facile solution and solid phase synthesis of phosphotyrosine mimetic l-4-[diethylphosphono(difluoromethyl)]-phenylalanine (FPmp(EtO)) derivatives
AUTHOR UNKNOWN, 1997
Global proteome analysis of the NCI-60 cell line panel.
Gholami AM, Hahne H, Wu Z, Auer FJ, Meng C, Wilhelm M, Kuster B., Cell Rep 4(3), 2013
PMID: 23933261
Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit.
Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL., Science 317(5835), 2007
PMID: 17626883
Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase.
Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, Kuriyan J., Mol. Cell 21(6), 2006
PMID: 16543148
Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers.
Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B., Proc. Natl. Acad. Sci. U.S.A. 104(19), 2007
PMID: 17470792
The role of 4-phosphonodifluoromethyl- and 4-phosphono-phenylalanine in the selectivity and cellular uptake of 5SH26 domain ligands
AUTHOR UNKNOWN, 1997
Alternative modes of binding of proteins with tandem SH2 domains.
O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE., Protein Sci. 9(3), 2000
PMID: 10752619
UCSF Chimera--a visualization system for exploratory research and analysis.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE., J Comput Chem 25(13), 2004
PMID: 15264254
Andromeda: a peptide search engine integrated into the MaxQuant environment.
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M., J. Proteome Res. 10(4), 2011
PMID: 21254760
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 25067910
PubMed | Europe PMC

Suchen in

Google Scholar