Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation

Ai M, Shishatskiy S, Wind J, Zhang X, Nottbohm CT, Mellech N, Winter A, Vieker H, Qiu J, Dietz K-J, Gölzhäuser A, et al. (2014)
Advanced materials (Deerfield Beach, Fla.) 26(21): 3421-3426.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Ai, MinUniBi; Shishatskiy, Sergey; Wind, Jan; Zhang, Xianghui; Nottbohm, Christoph T.; Mellech, NilsUniBi; Winter, AndreasUniBi; Vieker, HenningUniBi; Qiu, Jun; Dietz, Karl-JosefUniBi; Gölzhäuser, ArminUniBi ; Beyer, AndréUniBi
Alle
Abstract / Bemerkung
Gas permeation characteristics of carbon nanomembranes (CNMs) from self-assembled monolayers are reported for the first time. The assembly of CNMs onto polydimethylsiloxane (PDMS) support membranes allows mechanical measurements under compression as well as determination of gas permeation characteristics. The results suggest that molecular-sized channels in CNMs dominate the permeation properties of the 1 nm thin CNMs.
Erscheinungsjahr
2014
Zeitschriftentitel
Advanced materials (Deerfield Beach, Fla.)
Band
26
Ausgabe
21
Seite(n)
3421-3426
ISSN
0935-9648
Page URI
https://pub.uni-bielefeld.de/record/2682277

Zitieren

Ai M, Shishatskiy S, Wind J, et al. Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced materials (Deerfield Beach, Fla.). 2014;26(21):3421-3426.
Ai, M., Shishatskiy, S., Wind, J., Zhang, X., Nottbohm, C. T., Mellech, N., Winter, A., et al. (2014). Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced materials (Deerfield Beach, Fla.), 26(21), 3421-3426. doi:10.1002/adma.201304536
Ai, M., Shishatskiy, S., Wind, J., Zhang, X., Nottbohm, C. T., Mellech, N., Winter, A., Vieker, H., Qiu, J., Dietz, K. - J., et al. (2014). Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced materials (Deerfield Beach, Fla.) 26, 3421-3426.
Ai, M., et al., 2014. Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced materials (Deerfield Beach, Fla.), 26(21), p 3421-3426.
M. Ai, et al., “Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation”, Advanced materials (Deerfield Beach, Fla.), vol. 26, 2014, pp. 3421-3426.
Ai, M., Shishatskiy, S., Wind, J., Zhang, X., Nottbohm, C.T., Mellech, N., Winter, A., Vieker, H., Qiu, J., Dietz, K.-J., Gölzhäuser, A., Beyer, A.: Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced materials (Deerfield Beach, Fla.). 26, 3421-3426 (2014).
Ai, Min, Shishatskiy, Sergey, Wind, Jan, Zhang, Xianghui, Nottbohm, Christoph T., Mellech, Nils, Winter, Andreas, Vieker, Henning, Qiu, Jun, Dietz, Karl-Josef, Gölzhäuser, Armin, and Beyer, André. “Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation”. Advanced materials (Deerfield Beach, Fla.) 26.21 (2014): 3421-3426.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Water-Stable Nanoporous Polymer Films with Excellent Proton Conductivity.
Wang Z, Liang C, Tang H, Grosjean S, Shahnas A, Lahann J, Bräse S, Wöll C., Macromol Rapid Commun 39(5), 2018
PMID: 29251389
Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation.
Choi K, Droudian A, Wyss RM, Schlichting KP, Park HG., Sci Adv 4(11), 2018
PMID: 30480092
Molecular weaving via surface-templated epitaxy of crystalline coordination networks.
Wang Z, Błaszczyk A, Fuhr O, Heissler S, Wöll C, Mayor M., Nat Commun 8(), 2017
PMID: 28198388
Fast and efficient synthesis of microporous polymer nanomembranes via light-induced click reaction.
An Q, Hassan Y, Yan X, Krolla-Sidenstein P, Mohammed T, Lang M, Bräse S, Tsotsalas M., Beilstein J Org Chem 13(), 2017
PMID: 28405235
Membrane thinning for efficient CO2 capture.
Selyanchyn R, Fujikawa S., Sci Technol Adv Mater 18(1), 2017
PMID: 29152016
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Templating for hierarchical structure control in carbon materials.
Schrettl S, Schulte B, Frauenrath H., Nanoscale 8(45), 2016
PMID: 27827511
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Gölzhäuser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes.
Lindemann P, Träutlein Y, Wöll C, Tsotsalas M., J Vis Exp (106), 2015
PMID: 26710232

47 References

Daten bereitgestellt von Europe PubMed Central.


Buonomenna, RSC Adv. 3(), 2013

Bernardo, Petrol. Chem. 50(), 2010

Lin, J. Mol. Struct. 739(), 2005
Selective molecular sieving through porous graphene.
Koenig SP, Wang L, Pellegrino J, Bunch JS., Nat Nanotechnol 7(11), 2012
PMID: 23042491
Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture.
Yave W, Car A, Wind J, Peinemann KV., Nanotechnology 21(39), 2010
PMID: 20808036

Decher, Science 277(), 1997
Thin films of cross-linked metallo-supramolecular coordination polyelectrolytes.
Sievers TK, Vergin A, Mohwald H, Kurth DG., Langmuir 23(24), 2007
PMID: 17956140

Mallwitz, Adv. Mater. 17(), 2005

Stroock, Langmuir 19(), 2003
Robust free-standing nanomembranes of organic/inorganic interpenetrating networks.
Vendamme R, Onoue SY, Nakao A, Kunitake T., Nat Mater 5(6), 2006
PMID: 16715083

Nardin, Langmuir 16(), 2000
Asymmetric superstructure formed in a block copolymer via phase separation.
Peinemann KV, Abetz V, Simon PF., Nat Mater 6(12), 2007
PMID: 17982467
Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.
Jung A, Filiz V, Rangou S, Buhr K, Merten P, Hahn J, Clodt J, Abetz C, Abetz V., Macromol Rapid Commun 34(7), 2013
PMID: 23401072

Watanabe, Adv. Mater. 19(), 2007
Unimpeded permeation of water through helium-leak-tight graphene-based membranes.
Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK., Science 335(6067), 2012
PMID: 22282806
Impermeable atomic membranes from graphene sheets.
Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL., Nano Lett. 8(8), 2008
PMID: 18630972

Leenaerts, Appl. Phys. Lett. 93(), 2008
Large-area synthesis of high-quality and uniform graphene films on copper foils.
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS., Science 324(5932), 2009
PMID: 19423775
Selective molecular transport through intrinsic defects in a single layer of CVD graphene.
O'Hern SC, Stewart CA, Boutilier MS, Idrobo JC, Bhaviripudi S, Das SK, Kong J, Laoui T, Atieh M, Karnik R., ACS Nano 6(11), 2012
PMID: 23030691
Formation and Structure of Self-Assembled Monolayers.
Ulman A., Chem. Rev. 96(4), 1996
PMID: 11848802

Schreiber, J. Phys.: Condens. Matter 16(), 2004
Self-assembled monolayers of thiolates on metals as a form of nanotechnology.
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM., Chem. Rev. 105(4), 2005
PMID: 15826011

Geyer, Appl. Phys. Lett. 75(), 1999
Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles.
Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hutten A, Rosner H, Eck W, Mayer J, Golzhauser A., Ultramicroscopy 108(9), 2008
PMID: 18406532

Turchanin, Appl. Phys. Lett. 90(), 2007

Turchanin, Adv. Mater. 21(), 2009
Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.
Turchanin A, Weber D, Buenfeld M, Kisielowski C, Fistul MV, Efetov KB, Weimann T, Stosch R, Mayer J, Golzhauser A., ACS Nano 5(5), 2011
PMID: 21491948
Mechanical characterization of carbon nanomembranes from self-assembled monolayers.
Zhang X, Beyer A, Golzhauser A., Beilstein J Nanotechnol 2(), 2011
PMID: 22259767
Polymer carpets.
Amin I, Steenackers M, Zhang N, Beyer A, Zhang X, Pirzer T, Hugel T, Jordan R, Golzhauser A., Small 6(15), 2010
PMID: 20635346
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Golzhauser A., Angew. Chem. Int. Ed. Engl. 49(45), 2010
PMID: 20886488

Turchanin, Adv. Mater. 20(), 2008

AUTHOR UNKNOWN, 0
Surface modification for PDMS-based microfluidic devices.
Zhou J, Khodakov DA, Ellis AV, Voelcker NH., Electrophoresis 33(1), 2011
PMID: 22128067

Shishatskii, J. Membr. Sci. 112(), 1996
A buckling-based metrology for measuring the elastic moduli of polymeric thin films.
Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, VanLandingham MR, Kim HC, Volksen W, Miller RD, Simonyi EE., Nat Mater 3(8), 2004
PMID: 15247909

Bowden, Nature 393(), 1998
A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates.
Khang DY, Jiang H, Huang Y, Rogers JA., Science 311(5758), 2005
PMID: 16357225

AUTHOR UNKNOWN, 1989

Watanabe, Macromolecules 40(), 2007

Nunes, 2001

Sanders, Polymer 54(), 2013

Kofinas, Polymer 35(), 1994

Odani, Polym. Eng. Sci. 17(), 1977
Complexity behind CO2 capture on NH2-MIL-53(Al).
Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJ, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F., Langmuir 27(7), 2011
PMID: 21375222

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24535992
PubMed | Europe PMC

Suchen in

Google Scholar