The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells

Rath AG, Rehberg M, Janke R, Genzel Y, Scholz S, Noll T, Rose T, Sandig V, Reichl U (2014)
Journal of Biotechnology 178: 43-53.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rath, Alexander G.; Rehberg, Markus; Janke, Robert; Genzel, Yvonne; Scholz, SebastianUniBi; Noll, ThomasUniBi ; Rose, Thomas; Sandig, Volker; Reichl, Udo
Abstract / Bemerkung
Optimization of bioprocesses with mammalian cells mainly concentrates on cell engineering, cell screening and medium optimization to achieve enhanced cell growth and productivity. For improving cell lines by cell engineering techniques, in-depth understandings of the regulation of metabolism and product formation as well as the resulting demand for the different medium components are needed. In this work, the relationship of cell specific growth and uptake rates and of changes in maximum in vitro enzyme activities with intracellular metabolite pools of glycolysis, pentose phosphate pathway, citric acid cycle and energy metabolism were determined for batch cultivations with AGE1.HN.AAT cells. Results obtained by modeling cell growth and consumption of main substrates showed that the dynamics of intracellular metabolite pools is primarily linked to the dynamics of specific glucose and glutamine uptake rates. By analyzing maximum in vitro enzyme activities we found low activities of pyruvate dehydrogenase and pyruvate carboxylase which suggest a reduced metabolite transfer into the citric acid cycle resulting in lactate release (Warburg effect). Moreover, an increase in the volumetric lactate production rate during the transition from exponential to stationary growth together with a transient accumulation of fructose1,6-bisphosphate, fructose 1-phosphate and ribose 5-phosphate point toward an upregulation of PK via FBP. Glutaminase activity was about 44-fold lower than activity of glutamine synthetase. This seemed to be sufficient for the supply of intermediates for biosynthesis but might lead to unnecessary dissipation of ATP. Taken together, our results elucidate regulation of metabolic networks of immortalized mammalian cells by changes of metabolite pools over the time course of batch cultivations. Eventually, it enables the use of cell engineering strategies to improve the availability of building blocks for biomass synthesis by increasing glucose as well as glutamine fluxes. An additional knockdown of the glutamine synthetase might help to prevent unnecessary dissipation of ATP, to yield a cell line with optimized growth characteristics and increased overall productivity. (C) 2014 Elsevier B.V. All rights reserved.
Stichworte
Intracellular metabolite; Enzyme activity; Recombinant protein; Mammalian cell; Mathematical model; Central carbon metabolism
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Biotechnology
Band
178
Seite(n)
43-53
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2679670

Zitieren

Rath AG, Rehberg M, Janke R, et al. The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. Journal of Biotechnology. 2014;178:43-53.
Rath, A. G., Rehberg, M., Janke, R., Genzel, Y., Scholz, S., Noll, T., Rose, T., et al. (2014). The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. Journal of Biotechnology, 178, 43-53. doi:10.1016/j.jbiotec.2014.03.012
Rath, Alexander G., Rehberg, Markus, Janke, Robert, Genzel, Yvonne, Scholz, Sebastian, Noll, Thomas, Rose, Thomas, Sandig, Volker, and Reichl, Udo. 2014. “The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells”. Journal of Biotechnology 178: 43-53.
Rath, A. G., Rehberg, M., Janke, R., Genzel, Y., Scholz, S., Noll, T., Rose, T., Sandig, V., and Reichl, U. (2014). The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. Journal of Biotechnology 178, 43-53.
Rath, A.G., et al., 2014. The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. Journal of Biotechnology, 178, p 43-53.
A.G. Rath, et al., “The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells”, Journal of Biotechnology, vol. 178, 2014, pp. 43-53.
Rath, A.G., Rehberg, M., Janke, R., Genzel, Y., Scholz, S., Noll, T., Rose, T., Sandig, V., Reichl, U.: The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells. Journal of Biotechnology. 178, 43-53 (2014).
Rath, Alexander G., Rehberg, Markus, Janke, Robert, Genzel, Yvonne, Scholz, Sebastian, Noll, Thomas, Rose, Thomas, Sandig, Volker, and Reichl, Udo. “The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells”. Journal of Biotechnology 178 (2014): 43-53.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach.
Zhang C, Wang W, Lu R, Jin S, Chen Y, Fan M, Huang B, Li Z, Hu F., J Invertebr Pathol 137(), 2016
PMID: 27116916
Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.
Silva AC, P Teixeira A, M Alves P., J Biotechnol 231(), 2016
PMID: 27215342
Glycolysis is governed by growth regime and simple enzyme regulation in adherent MDCK cells.
Rehberg M, Ritter JB, Reichl U., PLoS Comput Biol 10(10), 2014
PMID: 25329309

52 References

Daten bereitgestellt von Europe PubMed Central.

Deviant energetic metabolism of glycolytic cancer cells.
Baggetto LG., Biochimie 74(11), 1992
PMID: 1477140

Büntemeyer, 1988
Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering
Chrysanthopoulos, Metab. Eng. 12(), 2009
Metabolite profiling of CHO cells with different growth characteristics.
Dietmair S, Hodson MP, Quek LE, Timmins NE, Chrysanthopoulos P, Jacob SS, Gray P, Nielsen LK., Biotechnol. Bioeng. 109(6), 2012
PMID: 22407794
Glycolysis – one of the keys to cancer?
Eigenbrodt, Trends Pharmacol. Sci. 1(), 1980
Batch-to-batch variability of two human designer cell lines AGE1. HN and AGE1.HN. AAT carried out by different laboratories under defined culture conditions using a mathematical model
Freund, Eng. Life Sci. 13(), 2013
A metabolomic approach to lung cancer.
Hori S, Nishiumi S, Kobayashi K, Shinohara M, Hatakeyama Y, Kotani Y, Hatano N, Maniwa Y, Nishio W, Bamba T, Fukusaki E, Azuma T, Takenawa T, Nishimura Y, Yoshida M., Lung Cancer 74(2), 2011
PMID: 21411176
Metabolic adaptation of MDCK cells to different growth conditions: effects on catalytic activities of central metabolic enzymes.
Janke R, Genzel Y, Handel N, Wahl A, Reichl U., Biotechnol. Bioeng. 108(11), 2011
PMID: 21618469
Metabolomics as a complementary tool in cell culture.
Khoo SH, Al-Rubeai M., Biotechnol. Appl. Biochem. 47(Pt 2), 2007
PMID: 17492944
Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells.
Lobo C, Ruiz-Bellido MA, Aledo JC, Marquez J, Nunez De Castro I, Alonso FJ., Biochem. J. 348 Pt 2(), 2000
PMID: 10816417
The transport of glutamine into mammalian cells.
McGivan JD, Bungard CI., Front. Biosci. 12(), 2007
PMID: 17127344
Energy metabolism in tumor cells
Moreno-Sanchez, FEBS J. (), 2007
Glutamine and glutamate as vital metabolites.
Newsholme P, Lima MM, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, Curi R., Braz. J. Med. Biol. Res. 36(2), 2003
PMID: 12563517
Primary metabolism in the new human cell line AGE1.HN at various substrate levels: increased metabolic efficiency and α(1)-antitrypsin production at reduced pyruvate load
Niklas, Appl. Microbiol. Biotechnol. 93(), 2011
Metabolism and metabolic burden by α1-antitrypsin production in human AGE1.HN cells.
Niklas J, Priesnitz C, Rose T, Sandig V, Heinzle E., Metab. Eng. 16(), 2013
PMID: 23376655
Evaluation of criteria for bioreactor comparison and operation standardization for mammalian cell culture
Platas, Eng. Life Sci. 5(), 2012
Changes in intracellular metabolite pools during growth of adherent MDCK cells in two different media.
Rehberg M, Rath A, Ritter JB, Genzel Y, Reichl U., Appl. Microbiol. Biotechnol. 98(1), 2013
PMID: 24169951
The relation between growth phases, cell volume changes and metabolism of adherent cells during cultivation.
Rehberg M, Ritter JB, Genzel Y, Flockerzi D, Reichl U., J. Biotechnol. 164(4), 2013
PMID: 23434835
Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells.
Reitzer LJ, Wice BM, Kennell D., J. Biol. Chem. 254(8), 1979
PMID: 429309
Glucose transporters and transport kinetics in retinoic acid-differentiated T47D human breast cancer cells.
Rivenzon-Segal D, Rushkin E, Polak-Charcon S, Degani H., Am. J. Physiol. Endocrinol. Metab. 279(3), 2000
PMID: 10950817
Kinetics of transport and phosphorylation of glucose in cancer cells.
Rodriguez-Enriquez S, Marin-Hernandez A, Gallardo-Perez JC, Moreno-Sanchez R., J. Cell. Physiol. 221(3), 2009
PMID: 19681047
Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli.
Saito N, Robert M, Kochi H, Matsuo G, Kakazu Y, Soga T, Tomita M., J. Biol. Chem. 284(24), 2009
PMID: 19372223
Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism.
Sharfstein ST, Tucker SN, Mancuso A, Blanch HW, Clark DS., Biotechnol. Bioeng. 43(11), 1994
PMID: 18615517
Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of Arabidopsis accessions.
Sulpice R, Trenkamp S, Steinfath M, Usadel B, Gibon Y, Witucka-Wall H, Pyl ET, Tschoep H, Steinhauser MC, Guenther M, Hoehne M, Rohwer JM, Altmann T, Fernie AR, Stitt M., Plant Cell 22(8), 2010
PMID: 20699391
Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed cases
Tremblay, Bioprocess Eng. 7(), 1992
Parallel analysis of transcript and metabolic profiles: a new approach in systems biology.
Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR., EMBO Rep. 4(10), 2003
PMID: 12973302
Understanding the Warburg effect: the metabolic requirements of cell proliferation.
Vander Heiden MG, Cantley LC, Thompson CB., Science 324(5930), 2009
PMID: 19460998
Evidence for an alternative glycolytic pathway in rapidly proliferating cells.
Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC., Science 329(5998), 2010
PMID: 20847263
Biopharmaceutical benchmarks 2010.
Walsh G., Nat. Biotechnol. 28(9), 2010
PMID: 20829826
The metabolism of tumors in the body
Warburg, J. Gen. Physiol. (), 1927
Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo.
Young CD, Lewis AS, Rudolph MC, Ruehle MD, Jackman MR, Yun UJ, Ilkun O, Pereira R, Abel ED, Anderson SM., PLoS ONE 6(8), 2011
PMID: 21826239
Glutamine: a major energy source for cultured mammalian cells
Zielke, Feder. Proc. 43(), 1984
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24657347
PubMed | Europe PMC

Suchen in

Google Scholar