Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis

Neshat A, Mentz A, Rückert C, Kalinowski J (2014)
Journal of biotechnology 190: 55-63.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
: The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts.
Erscheinungsjahr
Zeitschriftentitel
Journal of biotechnology
Band
190
Seite(n)
55-63
ISSN
PUB-ID

Zitieren

Neshat A, Mentz A, Rückert C, Kalinowski J. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. Journal of biotechnology. 2014;190:55-63.
Neshat, A., Mentz, A., Rückert, C., & Kalinowski, J. (2014). Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. Journal of biotechnology, 190, 55-63. doi:10.1016/j.jbiotec.2014.05.033
Neshat, A., Mentz, A., Rückert, C., and Kalinowski, J. (2014). Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. Journal of biotechnology 190, 55-63.
Neshat, A., et al., 2014. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. Journal of biotechnology, 190, p 55-63.
A. Neshat, et al., “Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis”, Journal of biotechnology, vol. 190, 2014, pp. 55-63.
Neshat, A., Mentz, A., Rückert, C., Kalinowski, J.: Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. Journal of biotechnology. 190, 55-63 (2014).
Neshat, Armin, Mentz, Almut, Rückert, Christian, and Kalinowski, Jörn. “Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis”. Journal of biotechnology 190 (2014): 55-63.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genome improvement of the acarbose producer Actinoplanes sp. SE50/110 and annotation refinement based on RNA-seq analysis.
Wolf T, Schneiker-Bekel S, Neshat A, Ortseifen V, Wibberg D, Zemke T, Pühler A, Kalinowski J., J Biotechnol 251(), 2017
PMID: 28427920
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR., Front Microbiol 8(), 2017
PMID: 29075239
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum.
Cheng F, Gong Q, Yu H, Stephanopoulos G., Biotechnol J 11(4), 2016
PMID: 26709615

78 References

Daten bereitgestellt von Europe PubMed Central.


Ajinomoto, 2013
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.
Baumbach J, Brinkrolf K, Czaja LF, Rahmann S, Tauch A., BMC Genomics 7(), 2006
PMID: 16478536
Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG.
Brock JE, Pourshahian S, Giliberti J, Limbach PA, Janssen GR., RNA 14(10), 2008
PMID: 18755843
Rfam 11.0: 10 years of RNA families.
Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23125362
Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis.
Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, Young DB., Cell Rep 5(4), 2013
PMID: 24268774
Redox control in actinobacteria.
den Hengst CD, Buttner MJ., Biochim. Biophys. Acta 1780(11), 2008
PMID: 18252205
Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine
Eggeling, Appl. Microbiol. Biotechnol. 25(), 1987
Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum.
Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S., Appl. Environ. Microbiol. 71(1), 2005
PMID: 15640189
Abstract shapes of RNA.
Giegerich R, Voss B, Rehmsmeier M., Nucleic Acids Res. 32(16), 2004
PMID: 15371549
Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis.
Gollnick P, Babitzke P, Antson A, Yanofsky C., Annu. Rev. Genet. 39(), 2005
PMID: 16285852
Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products.
Gopinath V, Murali A, Dhar KS, Nampoothiri KM., Appl. Microbiol. Biotechnol. 93(1), 2011
PMID: 22094976
The T box mechanism: tRNA as a regulatory molecule.
Green NJ, Grundy FJ, Henkin TM., FEBS Lett. 584(2), 2010
PMID: 19932103
Modulation of ribosomal recruitment to 5'-terminal start codons by translation initiation factors IF2 and IF3.
Grill S, Moll I, Hasenohrl D, Gualerzi CO, Blasi U., FEBS Lett. 495(3), 2001
PMID: 11334885
Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
The common aromatic biosynthetic pathway
Herrmann, 1983
Genome analysis ReadXplorer - Visualization and Analysis of Mapped Sequences
Hilker, Bioinformatics (), 2014
RNA-Seq analysis of Mycobacterium avium non-coding transcriptome.
Ignatov D, Malakho S, Majorov K, Skvortsov T, Apt A, Azhikina T., PLoS ONE 8(9), 2013
PMID: 24066122
The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
Transcriptional regulation of histidine biosynthesis genes in Corynebacterium glutamicum
Jung, Canadian J. of Microbio. 187(), 2010
An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis?
Kaberdina, Mol. Cell. 33(), 2010
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering
Katsumata, Nat. Biotechnol. 11(), 1993
Attenuation in amino acid biosynthetic operons.
Kolter R, Yanofsky C., Annu. Rev. Genet. 16(), 1982
PMID: 6186194
Regulatory RNAs and target mRNA decay in prokaryotes.
Lalaouna D, Simoneau-Roy M, Lafontaine D, Masse E., Biochim. Biophys. Acta 1829(6-7), 2013
PMID: 23500183
Corynebacterium glutamicum contains 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that display novel biochemical features.
Liu YJ, Li PP, Zhao KX, Wang BJ, Jiang CY, Drake HL, Liu SJ., Appl. Environ. Microbiol. 74(17), 2008
PMID: 18621870
Road map of the phylum Actinobacteria
Ludwig, 2012
Sequence analysis of the Brevibacterium lactofermentum trp operon
Matsui, Mol. Gen. Genet. MGG 209(), 1987
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control.
Moll I, Grill S, Gualerzi CO, Blasi U., Mol. Microbiol. 43(1), 2002
PMID: 11849551
Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs.
Moll I, Hirokawa G, Kiel MC, Kaji A, Blasi U., Nucleic Acids Res. 32(11), 2004
PMID: 15215335
Transcription attenuation in bacteria: theme and variations
Naville, Brief. Funct. Genomics Proteomics 8(), 2009
Direct evidence for a constitutive internal promoter in the tryptophan operon of Corynebacterium glutamicum.
O'Gara JP, Dunican LK., Biochem. Biophys. Res. Commun. 203(2), 1994
PMID: 8093062
Regulation of gene expression
Pátek, 2005
Branched-chain amino acids
Pátek, 2007
CoryneRegNet 6.0--Updated database content, new analysis methods and novel features focusing on community demands.
Pauling J, Rottger R, Tauch A, Azevedo V, Baumbach J., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22080556
A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi.
Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA, He M, Croucher NJ, Pickard DJ, Maskell DJ, Parkhill J, Choudhary J, Thomson NR, Dougan G., PLoS Genet. 5(7), 2009
PMID: 19609351
Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
Pfeifer-Sancar K, Mentz A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24341750
Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5′-ends of primary transcripts
Schwientek, J. Biotechnol. S0168–S1656(), 2014
Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus.
Vogt K, Bhabhra R, Rhodes JC, Askew DS., BMC Microbiol. 5(), 2005
PMID: 15649330
The primary transcriptome of the major human pathogen Helicobacter pylori.
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, Stadler PF, Vogel J., Nature 464(7286), 2010
PMID: 20164839
Aromatic amino acids
Sprenger, 2007
Characterization of Mycobacterium tuberculosis mycothiol S-conjugate amidase.
Steffek M, Newton GL, Av-Gay Y, Fahey RC., Biochemistry 42(41), 2003
PMID: 14556638
RNAshapes: an integrated RNA analysis package based on abstract shapes.
Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R., Bioinformatics 22(4), 2005
PMID: 16357029
Regulation by small RNAs in bacteria: expanding frontiers.
Storz G, Vogel J, Wassarman KM., Mol. Cell 43(6), 2011
PMID: 21925377
Improving quantitative real-time RT-PCR reproducibility by boosting primer-linked amplification efficiency
Tichopad, Biotechnol. Lett. (), 2002
Amino acid biosynthesis and its regulation
Umbarger, Annu. Rev. Biochem. 47(), 1978
Biosynthesis of the branched-chain amino acids
Umbarger, 1996
Conserved economics of transcription termination in eubacteria.
Unniraman S, Prakash R, Nagaraja V., Nucleic Acids Res. 30(3), 2002
PMID: 11809879
RNA-seq analysis of the C. briggsae transcriptome.
Uyar B, Chu JS, Vergara IA, Chua SY, Jones MR, Wong T, Baillie DL, Chen N., Genome Res. 22(8), 2012
PMID: 22772596
Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli.
Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, Engelberg-Kulka H, Moll I., Cell 147(1), 2011
PMID: 21944167
Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis.
Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky VA., FEMS Microbiol. Lett. 234(2), 2004
PMID: 15135544
Comparative genomic analysis of T-box regulatory systems in bacteria.
Vitreschak AG, Mironov AA, Lyubetsky VA, Gelfand MS., RNA 14(4), 2008
PMID: 18359782
The versatility of phosphoenolpyruvate and its vinyl ether products in biosynthesis.
Walsh CT, Benson TE, Kim DH, Lees WJ., Chem. Biol. 3(2), 1996
PMID: 8807832
Dual RNA-seq of pathogen and host.
Westermann AJ, Gorski SA, Vogel J., Nat. Rev. Microbiol. 10(9), 2012
PMID: 22890146
Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens.
Wilms I, Overloper A, Nowrousian M, Sharma CM, Narberhaus F., RNA Biol 9(4), 2012
PMID: 22336765
Ancient origin of the tryptophan operon and the dynamics of evolutionary change.
Xie G, Keyhani NO, Bonner CA, Jensen RA., Microbiol. Mol. Biol. Rev. 67(3), 2003
PMID: 12966138

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24910972
PubMed | Europe PMC

Suchen in

Google Scholar