Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL

Barden S, Schomburg B, Conradi J, Backert S, Sewald N, Niemann H (2014)
Acta crystallographica. Section D, Biological crystallography 70(Pt 5): 1391-1400.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
A new crystal form of the Helicobacter pylori type IV secretion system (T4SS) pilus protein CagL is described here. In contrast to two previously reported monomeric structures, CagL forms a three-dimensional domain-swapped dimer. CagL dimers can arise during refolding from inclusion bodies or can form spontaneously from purified monomeric CagL in the crystallization conditions. Monomeric CagL forms a three-helix bundle, with which the N-terminal helix is only loosely associated. In the new crystal form, the N-terminal helix is missing. The domain swap is owing to exchange of the C-terminal helix between the two protomers of a dimer. A loop-to-helix transition results in a long helix of 108 amino acids comprising the penultimate and the last helix of the monomer. The RGD motif of dimeric CagL adopts an α-helical conformation. In contrast to the previously reported structures, the conserved and functionally important C-terminal hexapeptide is resolved. It extends beyond the three-helix bundle as an exposed helical appendage. This new crystal form contributes to the molecular understanding of CagL by highlighting rigid and flexible regions in the protein and by providing the first view of the C-terminus. Based on the structural features, a previously unrecognized homology between CagL and CagI is discussed.
Erscheinungsjahr
2014
Zeitschriftentitel
Acta crystallographica. Section D, Biological crystallography
Band
70
Ausgabe
Pt 5
Seite(n)
1391-1400
ISSN
1399-0047
eISSN
1399-0047
Page URI
https://pub.uni-bielefeld.de/record/2676579

Zitieren

Barden S, Schomburg B, Conradi J, Backert S, Sewald N, Niemann H. Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography. 2014;70(Pt 5):1391-1400.
Barden, S., Schomburg, B., Conradi, J., Backert, S., Sewald, N., & Niemann, H. (2014). Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography, 70(Pt 5), 1391-1400. doi:10.1107/S1399004714003150
Barden, Stephan, Schomburg, Benjamin, Conradi, Jens, Backert, Steffen, Sewald, Norbert, and Niemann, Hartmut. 2014. “Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL”. Acta crystallographica. Section D, Biological crystallography 70 (Pt 5): 1391-1400.
Barden, S., Schomburg, B., Conradi, J., Backert, S., Sewald, N., and Niemann, H. (2014). Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography 70, 1391-1400.
Barden, S., et al., 2014. Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography, 70(Pt 5), p 1391-1400.
S. Barden, et al., “Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL”, Acta crystallographica. Section D, Biological crystallography, vol. 70, 2014, pp. 1391-1400.
Barden, S., Schomburg, B., Conradi, J., Backert, S., Sewald, N., Niemann, H.: Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography. 70, 1391-1400 (2014).
Barden, Stephan, Schomburg, Benjamin, Conradi, Jens, Backert, Steffen, Sewald, Norbert, and Niemann, Hartmut. “Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL”. Acta crystallographica. Section D, Biological crystallography 70.Pt 5 (2014): 1391-1400.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

CagL polymorphisms D58/K59 are predominant in Helicobacter pylori strains isolated from Mexican patients with chronic gastritis.
Román-Román A, Martínez-Santos VI, Castañón-Sánchez CA, Albañil-Muñoz AJ, González-Mendoza P, Soto-Flores DG, Martínez-Carrillo DN, Fernández-Tilapa G., Gut Pathog 11(), 2019
PMID: 30805032
The Helicobacter pylori adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA.
Bonsor DA, Zhao Q, Schmidinger B, Weiss E, Wang J, Deredge D, Beadenkopf R, Dow B, Fischer W, Beckett D, Wintrode PL, Haas R, Sundberg EJ., EMBO J 37(13), 2018
PMID: 29724755
Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation.
Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R., PLoS Pathog 14(10), 2018
PMID: 30365569
Integrin engagement by the helical RGD motif of the Helicobacter pylori CagL protein is regulated by pH-induced displacement of a neighboring helix.
Bonsor DA, Pham KT, Beadenkopf R, Diederichs K, Haas R, Beckett D, Fischer W, Sundberg EJ., J Biol Chem 290(20), 2015
PMID: 25837254
Genes required for assembly of pili associated with the Helicobacter pylori cag type IV secretion system.
Johnson EM, Gaddy JA, Voss BJ, Hennig EE, Cover TL., Infect Immun 82(8), 2014
PMID: 24891108

50 References

Daten bereitgestellt von Europe PubMed Central.


Adams, Acta Cryst. D 66(), 2010

Anand, Acta Cryst. D 58(), 2002
Why preferential hydration does not always stabilize the native structure of globular proteins.
Arakawa T, Bhat R, Timasheff SN., Biochemistry 29(7), 1990
PMID: 2331472
Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry.
Backert S, Kwok T, Schmid M, Selbach M, Moese S, Peek RM Jr, Konig W, Meyer TF, Jungblut PR., Proteomics 5(5), 2005
PMID: 15717330
Electrostatics of nanosystems: application to microtubules and the ribosome.
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA., Proc. Natl. Acad. Sci. U.S.A. 98(18), 2001
PMID: 11517324
A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL.
Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH., Structure 21(11), 2013
PMID: 24076404
Improved prediction of signal peptides: SignalP 3.0.
Bendtsen JD, Nielsen H, von Heijne G, Brunak S., J. Mol. Biol. 340(4), 2004
PMID: 15223320
Domain swapping: entangling alliances between proteins.
Bennett MJ, Choe S, Eisenberg D., Proc. Natl. Acad. Sci. U.S.A. 91(8), 1994
PMID: 8159715
Deposition diseases and 3D domain swapping.
Bennett MJ, Sawaya MR, Eisenberg D., Structure 14(5), 2006
PMID: 16698543
3D domain swapping: a mechanism for oligomer assembly.
Bennett MJ, Schlunegger MP, Eisenberg D., Protein Sci. 4(12), 1995
PMID: 8580836
Protein-protein interactions among Helicobacter pylori cag proteins.
Busler VJ, Torres VJ, McClain MS, Tirado O, Friedman DB, Cover TL., J. Bacteriol. 188(13), 2006
PMID: 16788188
Protein reconstitution and three-dimensional domain swapping: benefits and constraints of covalency.
Carey J, Lindman S, Bauer M, Linse S., Protein Sci. 16(11), 2007
PMID: 17962398
cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors.
Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A., Proc. Natl. Acad. Sci. U.S.A. 93(25), 1996
PMID: 8962108
DISULFIND: a disulfide bonding state and cysteine connectivity prediction server.
Ceroni A, Passerini A, Vullo A, Frasconi P., Nucleic Acids Res. 34(Web Server issue), 2006
PMID: 16844986
A systematic approach toward stabilization of CagL, a protein antigen from Helicobacter pylori that is a candidate subunit vaccine.
Choudhari SP, Pendleton KP, Ramsey JD, Blanchard TG, Picking WD., J Pharm Sci 102(8), 2013
PMID: 23794457
The Jpred 3 secondary structure prediction server.
Cole C, Barber JD, Barton GJ., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18463136
Cyclic RGD peptides interfere with binding of the Helicobacter pylori protein CagL to integrins αVβ3 and α5β1.
Conradi J, Huber S, Gaus K, Mertink F, Royo Gracia S, Strijowski U, Backert S, Sewald N., Amino Acids 43(1), 2011
PMID: 21915696
An RGD helper sequence in CagL of Helicobacter pylori assists in interactions with integrins and injection of CagA.
Conradi J, Tegtmeyer N, Wozna M, Wissbrock M, Michalek C, Gagell C, Cover TL, Frank R, Sewald N, Backert S., Front Cell Infect Microbiol 2(), 2012
PMID: 22919661

Crestfield, Arch. Biochem. Biophys. Suppl. 1(), 1962

Emsley, Acta Cryst. D 66(), 2010

Evans, Acta Cryst. D 62(), 2006
Lyophilization-induced reversible changes in the secondary structure of proteins.
Griebenow K, Klibanov AM., Proc. Natl. Acad. Sci. U.S.A. 92(24), 1995
PMID: 7479920
A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein.
Hohlfeld S, Pattis I, Puls J, Plano GV, Haas R, Fischer W., Mol. Microbiol. 59(5), 2006
PMID: 16469000

Joosten, Nucleic Acids Res. 39(), 2010

Kabsch, Acta Cryst. A 32(), 1976

Kabsch, Acta Cryst. D 66(), 2010
Inference of macromolecular assemblies from crystalline state.
Krissinel E, Henrick K., J. Mol. Biol. 372(3), 2007
PMID: 17681537
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies.
Kutter S, Buhrdorf R, Haas J, Schneider-Brachert W, Haas R, Fischer W., J. Bacteriol. 190(6), 2008
PMID: 18178731

Kwok, Nature (London) 449(), 2007
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036
3D domain swapping: as domains continue to swap.
Liu Y, Eisenberg D., Protein Sci. 11(6), 2002
PMID: 12021428
Phaser crystallographic software.
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ., J Appl Crystallogr 40(Pt 4), 2007
PMID: 19461840

Painter, J. Appl. Cryst. 39(), 2006
Fibronectin at a glance.
Pankov R, Yamada KM., J. Cell. Sci. 115(Pt 20), 2002
PMID: 12244123
CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL.
Pham KT, Weiss E, Jimenez Soto LF, Breithaupt U, Haas R, Fischer W., PLoS ONE 7(4), 2012
PMID: 22493745
The unfolding story of three-dimensional domain swapping.
Rousseau F, Schymkowitz JW, Itzhaki LS., Structure 11(3), 2003
PMID: 12623012
Implications of 3D domain swapping for protein folding, misfolding and function.
Rousseau F, Schymkowitz J, Itzhaki LS., Adv. Exp. Med. Biol. 747(), 2012
PMID: 22949116
Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues.
Rousseau F, Schymkowitz JW, Wilkinson HR, Itzhaki LS., Proc. Natl. Acad. Sci. U.S.A. 98(10), 2001
PMID: 11344301
Tricine-SDS-PAGE.
Schagger H., Nat Protoc 1(1), 2006
PMID: 17406207
Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly.
Schlunegger MP, Bennett MJ, Eisenberg D., Adv. Protein Chem. 50(), 1997
PMID: 9338079
Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface.
Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL., PLoS Pathog. 7(9), 2011
PMID: 21909278
How Helicobacter pylori infection controls gastric acid secretion.
Smolka AJ, Backert S., J. Gastroenterol. 47(6), 2012
PMID: 22565637
Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium.
Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ., Proc. Natl. Acad. Sci. U.S.A. 102(3), 2005
PMID: 15644442
Helicobacter pylori CagL dependent induction of gastrin expression via a novel αvβ5-integrin-integrin linked kinase signalling complex.
Wiedemann T, Hofbaur S, Tegtmeyer N, Huber S, Sewald N, Wessler S, Backert S, Rieder G., Gut 61(7), 2012
PMID: 22287591

Winn, Acta Cryst. D 67(), 2011
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24816107
PubMed | Europe PMC

Suchen in

Google Scholar