Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism

Selvamani RSV, Friehs K, Flaschel E (2014)
Bioprocess and Biosystems Engineering 37(3): 401-413.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Selvamani, Ram Shankar Velur; Friehs, KarlUniBi; Flaschel, ErwinUniBi
Abstract / Bemerkung
The secretion of recombinant proteins into the extracellular space by Escherichia coli presents advantages like easier purification and protection from proteolytic degradation. The controlled co-expression of a bacteriocin release protein aids in moving periplasmic proteins through the outer membrane. Since such systems have rarely been applied in continuous culture it seemed to be attractive to study the interplay between growth-phase regulated promoters controlling release protein genes and the productivity of a chemostat process. To avoid the use of antibiotics and render this process more sustainable, alternative plasmid selection mechanisms were required. In the current study, the strain E. coli JM109 harboring plasmid p582 was shown to stably express and secrete recombinant beta-glucanase in continuous culture using a minimal medium. The segregational instability of the plasmid in the absence of antibiotic selection pressure was demonstrated. The leuB gene, crucial in the leucine biosynthetic pathway, was cloned onto plasmid p582 and the new construct transformed into an E. coli Keio (Delta leuB) knockout strain. The ability of the construct to complement the leucine auxotrophy was initially tested in shake-flasks and batch cultivation. Later, this strain was successfully grown for more than 200 h in a chemostat and was found to be able to express the recombinant protein. Significantly, it showed a stable maintenance of the recombinant plasmid in the absence of any antibiotics. The plasmid stability in a continuously cultivated E. coli fermentation, in the absence of antibiotics, with extracellular secretion of recombinant protein provides an interesting model for further improvements.
Stichworte
Chemostat; Recombinant protein; Plasmid maintenance; Leucine; Auxotrophy; Escherichia coli
Erscheinungsjahr
2014
Zeitschriftentitel
Bioprocess and Biosystems Engineering
Band
37
Ausgabe
3
Seite(n)
401-413
ISSN
1615-7591
eISSN
1615-7605
Page URI
https://pub.uni-bielefeld.de/record/2675672

Zitieren

Selvamani RSV, Friehs K, Flaschel E. Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism. Bioprocess and Biosystems Engineering. 2014;37(3):401-413.
Selvamani, R. S. V., Friehs, K., & Flaschel, E. (2014). Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism. Bioprocess and Biosystems Engineering, 37(3), 401-413. doi:10.1007/s00449-013-1005-4
Selvamani, Ram Shankar Velur, Friehs, Karl, and Flaschel, Erwin. 2014. “Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism”. Bioprocess and Biosystems Engineering 37 (3): 401-413.
Selvamani, R. S. V., Friehs, K., and Flaschel, E. (2014). Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism. Bioprocess and Biosystems Engineering 37, 401-413.
Selvamani, R.S.V., Friehs, K., & Flaschel, E., 2014. Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism. Bioprocess and Biosystems Engineering, 37(3), p 401-413.
R.S.V. Selvamani, K. Friehs, and E. Flaschel, “Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism”, Bioprocess and Biosystems Engineering, vol. 37, 2014, pp. 401-413.
Selvamani, R.S.V., Friehs, K., Flaschel, E.: Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism. Bioprocess and Biosystems Engineering. 37, 401-413 (2014).
Selvamani, Ram Shankar Velur, Friehs, Karl, and Flaschel, Erwin. “Extracellular recombinant protein production under continuous culture conditions with Escherichia coli using an alternative plasmid selection mechanism”. Bioprocess and Biosystems Engineering 37.3 (2014): 401-413.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts.
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A., Biotechnol J 12(8), 2017
PMID: 28719144

41 References

Daten bereitgestellt von Europe PubMed Central.

Extracellular recombinant protein production from Escherichia coli.
Ni Y, Chen R., Biotechnol. Lett. 31(11), 2009
PMID: 19597765
Continuous culture--making a comeback?
Hoskisson PA, Hobbs G., Microbiology (Reading, Engl.) 151(Pt 10), 2005
PMID: 16207900
Microbial metabolomics: past, present and future methodologies.
Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ., Biotechnol. Lett. 29(1), 2006
PMID: 17091378
Kinetic studies of recombinant human interferon-gamma expression in continuous cultures of E. coli.
Vaiphei ST, Pandey G, Mukherjee KJ., J. Ind. Microbiol. Biotechnol. 36(12), 2009
PMID: 19727876

E, Process Biochem 47(), 2012

WJ, J Chem Technol Biotechnol 76(), 2001
Optimization of bacteriocin-release-protein-induced protein release by Escherichia coli: extracellular production of the periplasmic molecular chaperone FaeE.
van der Wal FJ, ten Hagen-Jongman CM, Oudega B, Luirink J., Appl. Microbiol. Biotechnol. 44(3-4), 1995
PMID: 8597549
Hybrid bacillus endo-(1-3,1-4)-beta-glucanases: construction of recombinant genes and molecular properties of the gene products.
Borriss R, Olsen O, Thomsen KK, von Wettstein D., Carlsberg Res. Commun. 54(2), 1989
PMID: 2673278

KRS, BMC Biochem (), 2006

N, Biochem Eng J 46(), 2009
Plasmid addiction systems: perspectives and applications in biotechnology.
Kroll J, Klinter S, Schneider C, Voss I, Steinbuchel A., Microb Biotechnol 3(6), 2010
PMID: 21255361
Plasmid copy number and plasmid stability.
Friehs K., Adv. Biochem. Eng. Biotechnol. 86(), 2004
PMID: 15088763
Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG.
Borsuk S, Mendum TA, Fagundes MQ, Michelon M, Cunha CW, McFadden J, Dellagostin OA., Tuberculosis (Edinb) 87(6), 2007
PMID: 17888740

T, Mol Syst Biol (), 2006
Screening for conditions of enhanced production of a recombinant beta-glucanase secreted into the medium by Escherichia coli.
Spexard M, Beshay U, Risse JM, Miksch G, Flaschel E., Biotechnol. Lett. 32(2), 2009
PMID: 19816658
Genetic fine structure of the leucine operon of Escherichia coli K-12.
Somers JM, Amzallag A, Middleton RB., J. Bacteriol. 113(3), 1973
PMID: 4570778
The stationary phase of the bacterial life cycle.
Kolter R, Siegele DA, Tormo A., Annu. Rev. Microbiol. 47(), 1993
PMID: 8257118
Stationary phase-specific expression of the fic gene in Escherichia coli K-12 is controlled by the rpoS gene product (sigma 38).
Utsumi R, Kusafuka S, Nakayama T, Tanaka K, Takayanagi Y, Takahashi H, Noda M, Kawamukai M., FEMS Microbiol. Lett. 113(3), 1993
PMID: 8270191

U, Process Biochem 39(), 2003

U, Eng Life Sci 7(), 2007

M, BMC Biotechnol (), 2011
A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts.
Glenting J, Madsen SM, Vrang A, Fomsgaard A, Israelsen H., Appl. Environ. Microbiol. 68(10), 2002
PMID: 12324356

S, PLoS One (), 2011
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23820825
PubMed | Europe PMC

Suchen in

Google Scholar