Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1

Pan X, Grigoryeva L, Seyrantepe V, Peng J, Kollmann K, Tremblay J, Lavoie JL, Hinek A, Lübke T, Pshezhetsky AV (2014)
PLoS genetics 10(2): e1004146.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Pan, Xuefang; Grigoryeva, Lubov; Seyrantepe, Volkan; Peng, Junzheng; Kollmann, Katrin; Tremblay, Johanne; Lavoie, Julie L.; Hinek, Aleksander; Lübke, TorbenUniBi; Pshezhetsky, Alexey V.
Abstract / Bemerkung
The potent vasoconstrictor peptides, endothelin 1 (ET-1) and angiotensin II control adaptation of blood vessels to fluctuations of blood pressure. Previously we have shown that the circulating level of ET-1 is regulated through its proteolytic cleavage by secreted serine carboxypeptidase, cathepsin A (CathA). However, genetically-modified mouse expressing catalytically inactive CathA S190A mutant retained about 10-15% of the carboxypeptidase activity against ET-1 in its tissues suggesting a presence of parallel/redundant catabolic pathway(s). In the current work we provide direct evidence that the enzyme, which complements CathA action towards ET-1 is a retinoid-inducible lysosomal serine carboxypeptidase 1 (Scpep1), a CathA homolog with previously unknown biological function. We generated a mouse strain devoid of both CathA and Scpep1 activities (DD mice) and found that in response to high-salt diet and systemic injections of ET-1 these animals showed significantly increased blood pressure as compared to wild type mice or those with single deficiencies of CathA or Scpep1. We also found that the reactivity of mesenteric arteries from DD mice towards ET-1 was significantly higher than that for all other groups of mice. The DD mice had a reduced degradation rate of ET-1 in the blood whereas their cultured arterial vascular smooth muscle cells showed increased ET-1-dependent phosphorylation of myosin light chain 2. Together, our results define the biological role of mammalian serine carboxypeptidase Scpep1 and suggest that Scpep1 and CathA together participate in the control of ET-1 regulation of vascular tone and hemodynamics.
Erscheinungsjahr
2014
Zeitschriftentitel
PLoS genetics
Band
10
Ausgabe
2
Art.-Nr.
e1004146
ISSN
1553-7404
eISSN
1553-7404
Page URI
https://pub.uni-bielefeld.de/record/2672894

Zitieren

Pan X, Grigoryeva L, Seyrantepe V, et al. Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1. PLoS genetics. 2014;10(2): e1004146.
Pan, X., Grigoryeva, L., Seyrantepe, V., Peng, J., Kollmann, K., Tremblay, J., Lavoie, J. L., et al. (2014). Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1. PLoS genetics, 10(2), e1004146. doi:10.1371/journal.pgen.1004146
Pan, X., Grigoryeva, L., Seyrantepe, V., Peng, J., Kollmann, K., Tremblay, J., Lavoie, J. L., Hinek, A., Lübke, T., and Pshezhetsky, A. V. (2014). Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1. PLoS genetics 10:e1004146.
Pan, X., et al., 2014. Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1. PLoS genetics, 10(2): e1004146.
X. Pan, et al., “Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1”, PLoS genetics, vol. 10, 2014, : e1004146.
Pan, X., Grigoryeva, L., Seyrantepe, V., Peng, J., Kollmann, K., Tremblay, J., Lavoie, J.L., Hinek, A., Lübke, T., Pshezhetsky, A.V.: Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1. PLoS genetics. 10, : e1004146 (2014).
Pan, Xuefang, Grigoryeva, Lubov, Seyrantepe, Volkan, Peng, Junzheng, Kollmann, Katrin, Tremblay, Johanne, Lavoie, Julie L., Hinek, Aleksander, Lübke, Torben, and Pshezhetsky, Alexey V. “Serine carboxypeptidase SCPEP1 and Cathepsin A play complementary roles in regulation of vasoconstriction via inactivation of endothelin-1”. PLoS genetics 10.2 (2014): e1004146.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:22Z
MD5 Prüfsumme
0eb09688f22cdd006942a532f8e44606

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chemical Proteomic Analysis of Serine Hydrolase Activity in Niemann-Pick Type C Mouse Brain.
van Rooden EJ, van Esbroeck ACM, Baggelaar MP, Deng H, Florea BI, Marques ARA, Ottenhoff R, Boot RG, Overkleeft HS, Aerts JMFG, van der Stelt M., Front Neurosci 12(), 2018
PMID: 30018533
Galactosialidosis: historic aspects and overview of investigated and emerging treatment options.
Annunziata I, d'Azzo A., Expert Opin Orphan Drugs 5(2), 2017
PMID: 28603679
Comparative venomics of Psyttalia lounsburyi and P. concolor, two olive fruit fly parasitoids: a hypothetical role for a GH1 β-glucosidase.
Mathé-Hubert H, Colinet D, Deleury E, Belghazi M, Ravallec M, Poulain J, Dossat C, Poirié M, Gatti JL., Sci Rep 6(), 2016
PMID: 27779241
Lysosomal Cathepsin A Plays a Significant Role in the Processing of Endogenous Bioactive Peptides.
Timur ZK, Akyildiz Demir S, Seyrantepe V., Front Mol Biosci 3(), 2016
PMID: 27826550

40 References

Daten bereitgestellt von Europe PubMed Central.

Molecular biology and biochemistry of the endothelins.
Yanagisawa M, Masaki T., Trends Pharmacol. Sci. 10(9), 1989
PMID: 2690429
Endothelin stimulates aldosterone biosynthesis by dispersed rabbit adreno-capsular cells.
Morishita R, Higaki J, Ogihara T., Biochem. Biophys. Res. Commun. 160(2), 1989
PMID: 2655594
New views on the role of endothelin (minireview).
Goraca A., Endocr Regul 36(4), 2002
PMID: 12466016
Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1.
Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T, Cao WH, Kamada N., Nature 368(6473), 1994
PMID: 8152482
Pulmonary fibrosis and chronic lung inflammation in ET-1 transgenic mice.
Hocher B, Schwarz A, Fagan KA, Thone-Reineke C, El-Hag K, Kusserow H, Elitok S, Bauer C, Neumayer HH, Rodman DM, Theuring F., Am. J. Respir. Cell Mol. Biol. 23(1), 2000
PMID: 10873149
Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction.
Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, Schiffrin EL., Circulation 110(15), 2004
PMID: 15466627
Angiotensin II stimulates proliferation of human pulmonary artery smooth muscle cells via the AT1 receptor.
Morrell NW, Upton PD, Higham MA, Yacoub MH, Polak JM, Wharton J., Chest 114(1 Suppl), 1998
PMID: 9676648
ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1.
Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWit D, Yanagisawa M., Cell 78(3), 1994
PMID: 8062389
Molecular pharmacology of endothelin converting enzymes.
Turner AJ, Murphy LJ., Biochem. Pharmacol. 51(2), 1996
PMID: 8615890
Neutral endopeptidase inhibitors and the pulmonary circulation.
Thompson JS, Morice AH., Gen. Pharmacol. 27(4), 1996
PMID: 8853287
Neutral endopeptidase 24.11 inhibition reduces pulmonary vascular remodeling in rats exposed to chronic hypoxia.
Winter RJ, Zhao L, Krausz T, Hughes JM., Am. Rev. Respir. Dis. 144(6), 1991
PMID: 1835825

AUTHOR UNKNOWN, 0
Protective protein as an endogenous endothelin degradation enzyme in human tissues.
Itoh K, Kase R, Shimmoto M, Satake A, Sakuraba H, Suzuki Y., J. Biol. Chem. 270(2), 1995
PMID: 7822272
Conversion of angiotensin I to angiotensin II by cathepsin A isoenzymes of porcine kidney.
Miller JJ, Changaris DG, Levy RS., Biochem. Biophys. Res. Commun. 154(3), 1988
PMID: 3408489
Angiotensin 1-9 and 1-7 release in human heart: role of cathepsin A.
Jackman HL, Massad MG, Sekosan M, Tan F, Brovkovych V, Marcic BM, Erdos EG., Hypertension 39(5), 2002
PMID: 12019279
Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is required for proper elastic fiber formation and inactivation of endothelin-1.
Seyrantepe V, Hinek A, Peng J, Fedjaev M, Ernest S, Kadota Y, Canuel M, Itoh K, Morales CR, Lavoie J, Tremblay J, Pshezhetsky AV., Circulation 117(15), 2008
PMID: 18391110
Molecular characterization and gene disruption of mouse lysosomal putative serine carboxypeptidase 1.
Kollmann K, Damme M, Deuschl F, Kahle J, D'Hooge R, Lullmann-Rauch R, Lubke T., FEBS J. 276(5), 2009
PMID: 19187242
Purification and characterization of an endothelin degradation enzyme from rat kidney.
Deng AY, Martin LL, Balwierczak JL, Jeng AY., J. Biochem. 115(1), 1994
PMID: 8188617
ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells.
Wang Y, Zheng XR, Riddick N, Bryden M, Baur W, Zhang X, Surks HK., Circ. Res. 104(4), 2009
PMID: 19131646
O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway.
Lima VV, Giachini FR, Carneiro FS, Carvalho MH, Fortes ZB, Webb RC, Tostes RC., Cardiovasc. Res. 89(3), 2010
PMID: 20978008
Targeting Rho and Rho-kinase in the treatment of cardiovascular disease.
Budzyn K, Marley PD, Sobey CG., Trends Pharmacol. Sci. 27(2), 2005
PMID: 16376997
Cloning of a novel retinoid-inducible serine carboxypeptidase from vascular smooth muscle cells.
Chen J, Streb JW, Maltby KM, Kitchen CM, Miano JM., J. Biol. Chem. 276(36), 2001
PMID: 11447226
Identification of novel lysosomal matrix proteins by proteome analysis.
Kollmann K, Mutenda KE, Balleininger M, Eckermann E, von Figura K, Schmidt B, Lubke T., Proteomics 5(15), 2005
PMID: 16145712
The 67-kD elastin/laminin-binding protein is related to an enzymatically inactive, alternatively spliced form of beta-galactosidase.
Hinek A, Rabinovitch M, Keeley F, Okamura-Oho Y, Callahan J., J. Clin. Invest. 91(3), 1993
PMID: 8383699
Novel β-amino acid derivatives as inhibitors of cathepsin A.
Ruf S, Buning C, Schreuder H, Horstick G, Linz W, Olpp T, Pernerstorfer J, Hiss K, Kroll K, Kannt A, Kohlmann M, Linz D, Hubschle T, Rutten H, Wirth K, Schmidt T, Sadowski T., J. Med. Chem. 55(17), 2012
PMID: 22861813
Infantile galactosialidosis presenting with congenital adrenal hyperplasia and renal hypertension.
Kyllerman M, Mansson JE, Westphal O, Conradi N, Nellstrom H., Pediatr. Neurol. 9(4), 1993
PMID: 8216548
Retinoids and pulmonary hypertension.
Preston IR, Tang G, Tilan JU, Hill NS, Suzuki YJ., Circulation 111(6), 2005
PMID: 15699255
Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension.
Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y, Ma N, Maruyama K., Circ. J. 74(8), 2010
PMID: 20606328
Retinoic acid rescues alveolar hypoplasia in the calorie-restricted developing rat lung.
Londhe VA, Maisonet TM, Lopez B, Shin BC, Huynh J, Devaskar SU., Am. J. Respir. Cell Mol. Biol. 48(2), 2012
PMID: 23087051
Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule.
Lavoie JL, Lake-Bruse KD, Sigmund CD., Am. J. Physiol. Renal Physiol. 286(5), 2004
PMID: 15075192
Development of hypertension and kidney hypertrophy in transgenic mice overexpressing ARAP1 gene in the kidney.
Guo DF, Chenier I, Lavoie JL, Chan JS, Hamet P, Tremblay J, Chen XM, Wang DH, Inagami T., Hypertension 48(3), 2006
PMID: 16801480
Impact of diet and stress on the development of preeclampsia-like symptoms in p57kip2 mice.
Falcao S, Solomon C, Monat C, Berube J, Gutkowska J, Lavoie JL., Am. J. Physiol. Heart Circ. Physiol. 296(1), 2008
PMID: 18978188
Exercise training can attenuate preeclampsia-like features in an animal model.
Falcao S, Bisotto S, Michel C, Lacasse AA, Vaillancourt C, Gutkowska J, Lavoie JL., J. Hypertens. 28(12), 2010
PMID: 20811291

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24586188
PubMed | Europe PMC

Suchen in

Google Scholar