The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities

Schmitz J, Heinrichs L, Scossa F, Fernie AR, Oelze M-L, Dietz K-J, Rothbart M, Grimm B, Flügge U-I, Häusler RE (2014)
Journal of Experimental Botany 65(6): 1619-1636.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schmitz, Jessica; Heinrichs, Luisa; Scossa, Federico; Fernie, Alisdair R; Oelze, Marie-LuiseUniBi; Dietz, Karl-JosefUniBi; Rothbart, Maxi; Grimm, Bernhard; Flügge, Ulf-Ingo; Häusler, Rainer E
Abstract / Bemerkung
Retrograde signals from chloroplasts are thought to control the expression of nuclear genes associated with plastidial processes such as acclimation to varying light conditions. Arabidopsis mutants altered in the day and night path of photoassimilate export from the chloroplasts served as tools to study the involvement of carbohydrates in high light (HL) acclimation. A double mutant impaired in the triose phosphate/phosphate translocator (TPT) and ADP-glucose pyrophosphorylase (AGPase) (adg1-1/tpt-2) exhibits a HL-dependent depletion in endogenous carbohydrates combined with a severe growth and photosynthesis phenotype. The acclimation response of mutant and wild-type plants has been assessed in time series after transfer from low light (LL) to HL by analysing photosynthetic performance, carbohydrates, MgProtoIX (a chlorophyll precursor), and the ascorbate/glutathione redox system, combined with microarray-based transcriptomic and GC-MS-based metabolomic approaches. The data indicate that the accumulation of soluble carbohydrates (predominantly glucose) acts as a short-term response to HL exposure in both mutant and wild-type plants. Only if carbohydrates are depleted in the long term (e.g. after 2 d) is the acclimation response impaired, as observed in the adg1-1/tpt-2 double mutant. Furthermore, meta-analyses conducted with in-house and publicly available microarray data suggest that, in the long term, reactive oxygen species such as H2O2 can replace carbohydrates as signals. Moreover, a cross-talk exists between genes associated with the regulation of starch and lipid metabolism. The involvement of genes responding to phytohormones in HL acclimation appears to be less likely. Various candidate genes involved in retrograde control of nuclear gene expression emerged from the analyses of global gene expression.
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Experimental Botany
Band
65
Ausgabe
6
Seite(n)
1619-1636
ISSN
0022-0957
eISSN
1460-2431
Page URI
https://pub.uni-bielefeld.de/record/2672819

Zitieren

Schmitz J, Heinrichs L, Scossa F, et al. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany. 2014;65(6):1619-1636.
Schmitz, J., Heinrichs, L., Scossa, F., Fernie, A. R., Oelze, M. - L., Dietz, K. - J., Rothbart, M., et al. (2014). The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany, 65(6), 1619-1636. doi:10.1093/jxb/eru027
Schmitz, Jessica, Heinrichs, Luisa, Scossa, Federico, Fernie, Alisdair R, Oelze, Marie-Luise, Dietz, Karl-Josef, Rothbart, Maxi, Grimm, Bernhard, Flügge, Ulf-Ingo, and Häusler, Rainer E. 2014. “The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities”. Journal of Experimental Botany 65 (6): 1619-1636.
Schmitz, J., Heinrichs, L., Scossa, F., Fernie, A. R., Oelze, M. - L., Dietz, K. - J., Rothbart, M., Grimm, B., Flügge, U. - I., and Häusler, R. E. (2014). The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany 65, 1619-1636.
Schmitz, J., et al., 2014. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany, 65(6), p 1619-1636.
J. Schmitz, et al., “The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities”, Journal of Experimental Botany, vol. 65, 2014, pp. 1619-1636.
Schmitz, J., Heinrichs, L., Scossa, F., Fernie, A.R., Oelze, M.-L., Dietz, K.-J., Rothbart, M., Grimm, B., Flügge, U.-I., Häusler, R.E.: The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Journal of Experimental Botany. 65, 1619-1636 (2014).
Schmitz, Jessica, Heinrichs, Luisa, Scossa, Federico, Fernie, Alisdair R, Oelze, Marie-Luise, Dietz, Karl-Josef, Rothbart, Maxi, Grimm, Bernhard, Flügge, Ulf-Ingo, and Häusler, Rainer E. “The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities”. Journal of Experimental Botany 65.6 (2014): 1619-1636.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transcriptional Regulation of the Glucose-6-Phosphate/Phosphate Translocator 2 Is Related to Carbon Exchange Across the Chloroplast Envelope.
Weise SE, Liu T, Childs KL, Preiser AL, Katulski HM, Perrin-Porzondek C, Sharkey TD., Front Plant Sci 10(), 2019
PMID: 31316533
Ion and metabolite transport in the chloroplast of algae: lessons from land plants.
Marchand J, Heydarizadeh P, Schoefs B, Spetea C., Cell Mol Life Sci 75(12), 2018
PMID: 29541792
Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean.
Wu Y, Gong W, Wang Y, Yong T, Yang F, Liu W, Wu X, Du J, Shu K, Liu J, Liu C, Yang W., J Plant Res 131(4), 2018
PMID: 29600314
In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance.
Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE., Plant Cell Physiol 59(7), 2018
PMID: 29444312
The Combined Loss of Triose Phosphate and Xylulose 5-Phosphate/Phosphate Translocators Leads to Severe Growth Retardation and Impaired Photosynthesis in Arabidopsis thaliana tpt/xpt Double Mutants.
Hilgers EJA, Schöttler MA, Mettler-Altmann T, Krueger S, Dörmann P, Eicks M, Flügge UI, Häusler RE., Front Plant Sci 9(), 2018
PMID: 30333839
Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development.
Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH., Plant Cell 29(2), 2017
PMID: 28138016
Defense against Reactive Carbonyl Species Involves at Least Three Subcellular Compartments Where Individual Components of the System Respond to Cellular Sugar Status.
Schmitz J, Dittmar IC, Brockmann JD, Schmidt M, Hüdig M, Rossoni AW, Maurino VG., Plant Cell 29(12), 2017
PMID: 29150548
Sugar suppresses cell death caused by disruption of fumarylacetoacetate hydrolase in Arabidopsis.
Zhi T, Zhou Z, Huang Y, Han C, Liu Y, Zhu Q, Ren C., Planta 244(3), 2016
PMID: 27097641
Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions.
Florez-Sarasa I, Ribas-Carbo M, Del-Saz NF, Schwahn K, Nikoloski Z, Fernie AR, Flexas J., New Phytol 212(1), 2016
PMID: 27321208
The role of arabidopsis WDR protein in plant growth and defense strategies.
Chuang HW, Feng JH, Feng YL., Plant Signal Behav 11(8), 2016
PMID: 27472469
Photosynthetic light reactions: integral to chloroplast retrograde signalling.
Gollan PJ, Tikkanen M, Aro EM., Curr Opin Plant Biol 27(), 2015
PMID: 26318477
Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions.
Thormählen I, Meitzel T, Groysman J, Öchsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo FJ, Geigenberger P., Plant Physiol 169(3), 2015
PMID: 26338951

96 References

Daten bereitgestellt von Europe PubMed Central.

Plastid protein synthesis is required for plant development in tobacco
Ahlert D, Ruf S, Bock R., 2003
Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase
Badger MR, von S, Ruuska S, Nakano H., 2000
Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts.
Balazadeh S, Jaspert N, Arif M, Mueller-Roeber B, Maurino VG., Front Plant Sci 3(), 2012
PMID: 23125844
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini Y, Hochberg Y., 1995
Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis.
Brautigam K, Dietzel L, Kleine T, Stroher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dormann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T., Plant Cell 21(9), 2009
PMID: 19737978
Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis.
Chardon F, Bedu M, Calenge F, Klemens PA, Spinner L, Clement G, Chietera G, Leran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus HE, Daniel-Vedele F, Krapp A., Curr. Biol. 23(8), 2013
PMID: 23583552
Evidence for a Contribution of ALA Synthesis to Plastid-To-Nucleus Signaling.
Czarnecki O, Glaßer C, Chen JG, Mayer KF, Grimm B., Front Plant Sci 3(), 2012
PMID: 23112801
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
The Arabidopsis thaliana Myo-inositol 1-phosphate synthase1 gene is required for Myo-inositol synthesis and suppression of cell death.
Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein PP, Gillaspy GE., Plant Cell 22(3), 2010
PMID: 20215587
The dynamics of photosynthesis.
Eberhard S, Finazzi G, Wollman FA., Annu. Rev. Genet. 42(), 2008
PMID: 18983262
Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis.
Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz M, Collinge D, Carrie C, Giraud E, Whelan J, David P, Javot H, Brearley C, Hell R, Marin E, Pogson BJ., Plant Cell 23(11), 2011
PMID: 22128124
The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses.
Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R., Plant Cell 23(2), 2011
PMID: 21335373
Recommendations for reporting metabolite data.
Fernie AR, Aharoni A, Willmitzer L, Stitt M, Tohge T, Kopka J, Carroll AJ, Saito K, Fraser PD, DeLuca V., Plant Cell 23(7), 2011
PMID: 21771932
Light control of plant development.
Fankhauser C, Chory J., Annu. Rev. Cell Dev. Biol. 13(), 1997
PMID: 9442873
Co-relations and their measurement, chiefly from anthropometric data
Galton F., 1888
The relationship between the quantum yield of photosynthetic transport and quenching of chlorophyll fluorescence
Genty B, Briantais JM, Baker NR., 1989
The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress.
Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J., Plant Physiol. 147(2), 2008
PMID: 18424626
The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.
Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y., Plant J. 55(3), 2008
PMID: 18419781
Chlororespiration and grana hyperstacking: how an Arabidopsis double mutant can survive despite defects in starch biosynthesis and daily carbon export from chloroplasts.
Hausler RE, Geimer S, Kunz HH, Schmitz J, Dormann P, Bell K, Hetfeld S, Guballa A, Flugge UI., Plant Physiol. 149(1), 2008
PMID: 18978072
The mysterious rescue of adg1-1/tpt-2—an Arabidopsis thaliana double mutant impaired in acclimation to high light—by exogenously supplied sugars
Heinrichs L, Schmitz J, Flügge UI, Häusler RE., 2012
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Light acclimation, retrograde signalling, cell death and immune defences in plants
Karpiński S, Szechyńska-Hebda M, Wituszyńska W, Burdiak P., 2013
No single way to understand singlet oxygen signalling in plants.
Kim C, Meskauskiene R, Apel K, Laloi C., EMBO Rep. 9(5), 2008
PMID: 18451767
Plastid signalling to the nucleus: messengers still lost in the mists?
Kleine T, Voigt C, Leister D., Trends Genet. 25(4), 2009
PMID: 19303165
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389
Signals from chloroplasts converge to regulate nuclear gene expression.
Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J., Science 316(5825), 2007
PMID: 17395793
Singlet oxygen production in photosynthesis.
Krieger-Liszkay A., J. Exp. Bot. 56(411), 2004
PMID: 15310815
The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis.
Kunz HH, Hausler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flugge UI, Schneider A., Plant Biol (Stuttg) 12 Suppl 1(), 2010
PMID: 20712627
Chloroplast research in the genomic age.
Leister D., Trends Genet. 19(1), 2003
PMID: 12493248
An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana
Leyman B, Van P, Thevelein JM., 2001
Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis.
Li S, van Os GM, Ren S, Yu D, Ketelaar T, Emons AM, Liu CM., Plant Physiol. 154(4), 2010
PMID: 20943851
THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS.
Lichtenthaler HK., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012203
Gas chromatography mass spectrometry-based metabolite profiling in plants.
Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR., Nat Protoc 1(1), 2006
PMID: 17406261
Improved method for the isolation of RNA from plant tissues.
Logemann J, Schell J, Willmitzer L., Anal. Biochem. 163(1), 1987
PMID: 2441623
Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis.
Lohse M, Nunes-Nesi A, Kruger P, Nagel A, Hannemann J, Giorgi FM, Childs L, Osorio S, Walther D, Selbig J, Sreenivasulu N, Stitt M, Fernie AR, Usadel B., Plant Physiol. 153(2), 2010
PMID: 20388663
Multiple comparison procedures updated.
Ludbrook J., Clin. Exp. Pharmacol. Physiol. 25(12), 1998
PMID: 9888002
Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.
Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hulskamp M, Hoecker U., Plant J. 74(4), 2013
PMID: 23425305
FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana
Meskauskiene R, Nater M, Goslings D, Kessler F, op R, Apel K., 2001
Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.
Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J., PLoS Genet. 4(2), 2008
PMID: 18248097
Reactive oxygen species homeostasis and signaling during drought and salinity stresses
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R., 2009
The steady-state level of Mgprotoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis
Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A., 2008
Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mgprotoporphyrin IX accumulation
Moulin M, McCormac AC, Terry MJ, Smith AG., 2008
ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control.
Noctor G, Foyer CH., Annu. Rev. Plant Physiol. Plant Mol. Biol. 49(), 1998
PMID: 15012235
Peroxide processing in photosynthesis: antioxidant coupling and redox signalling
Noctor G, Veljovic-Jovanovic S, Foyer CH., 2000
ATTED-II provides coexpressed gene networks for Arabidopsis
Obayashi T, Hayahi S, Saeki M, Ohta H, Kinoshita K., 2009
VENNY. An interactive tool for comparing lists with Venn Diagrams
Oliveros JC., 2007
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K., Plant Cell 15(10), 2003
PMID: 14508004
Environmental control of plant nuclear gene expression by chloroplast redox signals.
Pfalz J, Liebers M, Hirth M, Grubler B, Holtzegel U, Schroter Y, Dietzel L, Pfannschmidt T., Front Plant Sci 3(), 2012
PMID: 23181068
Photosynthetic control of chloroplast gene expression
Pfannschmidt T, Nilsson A, Allen JF., 1999
Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems.
Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A., Plant Cell 13(1), 2001
PMID: 11158526
Sugar sensing and signaling in plants: conserved and novel mechanisms
Rolland F, BaenGonzalez E, Sheen J., 2006
Sugar sensing and signaling in plants
Rolland F, Moore B, Sheen J., 2002
Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana.
Schmitz J, Schottler MA, Krueger S, Geimer S, Schneider A, Kleine T, Leister D, Bell K, Flugge UI, Hausler RE., BMC Plant Biol. 12(), 2012
PMID: 22248311
An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished.
Schneider A, Hausler RE, Kolukisaoglu U, Kunze R, van der Graaff E, Schwacke R, Catoni E, Desimone M, Flugge UI., Plant J. 32(5), 2002
PMID: 12472685
Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior.
Schweizer F, Fernandez-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P., Plant Cell 25(8), 2013
PMID: 23943862
R S-talk—how the apoplast, the chloroplast, and the nucleus get the message through
Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J., 2013
Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations
Sharkey TD., 1985
HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis.
Shin DH, Choi M, Kim K, Bang G, Cho M, Choi SB, Choi G, Park YI., FEBS Lett. 587(10), 2013
PMID: 23583450
Sugar regulation of gene expression in plants.
Smeekens S., Curr. Opin. Plant Biol. 1(3), 1998
PMID: 10066585
SUGAR-INDUCED SIGNAL TRANSDUCTION IN PLANTS.
Smeekens S., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012186
Linear models and empirical bayes methods for assessing differential expression in microarray experiments
Smyth GK., 2004
pcaMethods--a bioconductor package providing PCA methods for incomplete data.
Stacklies W, Redestig H, Scholz M, Walther D, Selbig J., Bioinformatics 23(9), 2007
PMID: 17344241
Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX.
Strand A, Asami T, Alonso J, Ecker JR, Chory J., Nature 421(6918), 2003
PMID: 12511958
Signal transduction between the chloroplast and the nucleus
Surpin M, Larkin R, Chory J., 2002
Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene.
Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S., Plant Physiol. 139(4), 2005
PMID: 16299184
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M., Plant J. 37(6), 2004
PMID: 14996223
Singlet oxygen in plants: production, detoxification and signaling
Triantaphylidès C, Havaux M., 2009
Myo-inositol and beyond--emerging networks under stress.
Valluru R, Van den Ende W., Plant Sci. 181(4), 2011
PMID: 21889044
Molecular mechanisms of photodamage in the Photosystem II complex.
Vass I., Biochim. Biophys. Acta 1817(1), 2011
PMID: 21565163
Proline metabolism and its implications for plant-environment interaction.
Verslues PE, Sharma S., Arabidopsis Book 8(), 2010
PMID: 22303265
Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana.
Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M., Science 339(6120), 2013
PMID: 23393265
An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets.
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ., PLoS ONE 2(8), 2007
PMID: 17684564
A model-based background adjustment for oligonucleotide expression arrays
Wu Z, Irizarry R, Gentleman R, Murillo FM, Spencer F., 2004
Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes.
Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K., Cell 149(7), 2012
PMID: 22726439
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24523502
PubMed | Europe PMC

Suchen in

Google Scholar