Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana

Alsharafa K, Vogel MO, Oelze M-L, Moore M, Stingl N, König K, Friedman H, Mueller MJ, Dietz K-J (2014)
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369(1640): 20130424.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m(-2) s(-1) (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m(-2) s(-1)), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role.
Erscheinungsjahr
2014
Zeitschriftentitel
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
Band
369
Ausgabe
1640
Art.-Nr.
20130424
ISSN
0962-8436
eISSN
1471-2970
Page URI
https://pub.uni-bielefeld.de/record/2662379

Zitieren

Alsharafa K, Vogel MO, Oelze M-L, et al. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2014;369(1640): 20130424.
Alsharafa, K., Vogel, M. O., Oelze, M. - L., Moore, M., Stingl, N., König, K., Friedman, H., et al. (2014). Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1640), 20130424. doi:10.1098/rstb.2013.0424
Alsharafa, Khalid, Vogel, Marc Oliver, Oelze, Marie-Luise, Moore, Marten, Stingl, Nadja, König, Katharina, Friedman, Haya, Mueller, Martin J., and Dietz, Karl-Josef. 2014. “Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (1640): 20130424.
Alsharafa, K., Vogel, M. O., Oelze, M. - L., Moore, M., Stingl, N., König, K., Friedman, H., Mueller, M. J., and Dietz, K. - J. (2014). Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369:20130424.
Alsharafa, K., et al., 2014. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1640): 20130424.
K. Alsharafa, et al., “Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana”, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 369, 2014, : 20130424.
Alsharafa, K., Vogel, M.O., Oelze, M.-L., Moore, M., Stingl, N., König, K., Friedman, H., Mueller, M.J., Dietz, K.-J.: Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 369, : 20130424 (2014).
Alsharafa, Khalid, Vogel, Marc Oliver, Oelze, Marie-Luise, Moore, Marten, Stingl, Nadja, König, Katharina, Friedman, Haya, Mueller, Martin J., and Dietz, Karl-Josef. “Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369.1640 (2014): 20130424.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Toward an Integrated Understanding of Retrograde Control of Photosynthesis.
Dietz KJ, Wesemann C, Wegener M, Seidel T., Antioxid Redox Signal 30(9), 2019
PMID: 29463103
Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato.
Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, Klinkhamer PGL, Leiss KA., Plant Cell Physiol 59(12), 2018
PMID: 30124946
The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.
Müller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz KJ., Plant J 91(6), 2017
PMID: 28644561
Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity.
Gollan PJ, Lima-Melo Y, Tiwari A, Tikkanen M, Aro EM., Philos Trans R Soc Lond B Biol Sci 372(1730), 2017
PMID: 28808104
Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size.
Borisova-Mubarakshina MM, Ivanov BN, Vetoshkina DV, Lubimov VY, Fedorchuk TP, Naydov IA, Kozuleva MA, Rudenko NN, Dall'Osto L, Cazzaniga S, Bassi R., J Exp Bot 66(22), 2015
PMID: 26324464
The significance of cysteine synthesis for acclimation to high light conditions.
Speiser A, Haberland S, Watanabe M, Wirtz M, Dietz KJ, Saito K, Hell R., Front Plant Sci 5(), 2014
PMID: 25653656
Changing the light environment: chloroplast signalling and response mechanisms.
Spetea C, Rintamäki E, Schoefs B., Philos Trans R Soc Lond B Biol Sci 369(1640), 2014
PMID: 24591707

79 References

Daten bereitgestellt von Europe PubMed Central.

Identification of proton-active residues in a higher plant light-harvesting complex
Walters RG, Ruban AV, Horton P., 1996
The role of xanthophylls cycle carotenoids in the protection of photosynthesis
Demmig-Adams B, Adams WW., 1996
PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches.
Niyogi KK., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012213
Processing of excitation energy by antenna pigments
Owens TG., 1994
The water-water cycle as alternative photon and electron sinks.
Asada K., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355(1402), 2000
PMID: 11127996
The function of peroxiredoxins in plant organelle redox metabolism.
Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I., J. Exp. Bot. 57(8), 2006
PMID: 16606633
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P., Science 284(5414), 1999
PMID: 10213690
Oxidative modifications to cellular components in plants.
Moller IM, Jensen PE, Hansson A., Annu Rev Plant Biol 58(), 2007
PMID: 17288534
Chloroplast biogenesis: control of plastid development, protein import, division and inheritance
Sakamoto W, Miyagishima SY, Jarvis P., 2008
Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria
Foyer CH, Noctor G., 2003
Plastid-to-nucleus retrograde signaling.
Nott A, Jung HS, Koussevitzky S, Chory J., Annu Rev Plant Biol 57(), 2006
PMID: 16669780
Plastid signalling to the nucleus and beyond.
Pogson BJ, Woo NS, Forster B, Small ID., Trends Plant Sci. 13(11), 2008
PMID: 18838332
Intracellular signaling from plastid to nucleus.
Chi W, Sun X, Zhang L., Annu Rev Plant Biol 64(), 2013
PMID: 23394498
Light intensity-dependent retrograde signalling in higher plants.
Szechynska-Hebda M, Karpinski S., J. Plant Physiol. 170(17), 2013
PMID: 23850030
Role of ABA in integrating plant responses to drought and salt stresses
Zhang J, Jia W, Yang J, Ismail AM., Field Crops Res. 97(1), 2006
PMID: IND43823829
Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv Salome)
Reinbothe S, Reinbothe C, Parthier B., 1993
Regulation of the Arabidopsis transcriptome by oxidative stress.
Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ., Plant Physiol. 127(1), 2001
PMID: 11553744
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K., Plant Cell 15(10), 2003
PMID: 14508004
Systemic and intracellular responses to photooxidative stress in Arabidopsis.
Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ., Plant Cell 19(12), 2007
PMID: 18156220
High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool.
Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J., Plant Physiol. 161(2), 2012
PMID: 23209128
Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation.
Pesaresi P, Hertle A, Pribil M, Kleine T, Wagner R, Strissel H, Ihnatowicz A, Bonardi V, Scharfenberg M, Schneider A, Pfannschmidt T, Leister D., Plant Cell 21(8), 2009
PMID: 19706797
Regulation of abscisic acid biosynthesis.
Xiong L, Zhu JK., Plant Physiol. 133(1), 2003
PMID: 12970472
Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development
Wasternack C, Kombrink E., 2010
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M., Plant J. 37(6), 2004
PMID: 14996223
Reactive oxygen gene network of plants.
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F., Trends Plant Sci. 9(10), 2004
PMID: 15465684
Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses.
Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW., Plant Physiol. 134(1), 2003
PMID: 14684841
Impact of chloroplastic- and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis.
Bechtold U, Richard O, Zamboni A, Gapper C, Geisler M, Pogson B, Karpinski S, Mullineaux PM., J. Exp. Bot. 59(2), 2008
PMID: 18212028
Early genomic responses to salicylic acid in Arabidopsis.
Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, Alvarez ME, Holuigue L., Plant Mol. Biol. 70(1-2), 2009
PMID: 19199050
Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis.
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R., Plant Cell 17(1), 2004
PMID: 15608336
Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis.
Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F., Plant Physiol. 141(2), 2006
PMID: 16603662
The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.
Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y., Plant J. 55(3), 2008
PMID: 18419781
Comparative analysis of leaf-type ferredoxin-NADP oxidoreductase isoforms in Arabidopsis thaliana.
Lintala M, Allahverdiyeva Y, Kangasjarvi S, Lehtimaki N, Keranen M, Rintamaki E, Aro EM, Mulo P., Plant J. 57(6), 2008
PMID: 19054362
Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array.
Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M., Plant Cell Physiol. 49(8), 2008
PMID: 18625610
Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light.
Mazzella MA, Arana MV, Staneloni RJ, Perelman S, Rodriguez Batiller MJ, Muschietti J, Cerdan PD, Chen K, Sanchez RA, Zhu T, Chory J, Casal JJ., Plant Cell 17(9), 2005
PMID: 16024587
Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves
Muller R, Nilsson L, Nielsen LK, Nielsen TH., 2005
Are diverse signalling pathways integrated in the regulation of arabidopsis antioxidant defence gene expression in response to excess excitation energy?
Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355(1402), 2000
PMID: 11128006
Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling.
Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH., Plant Cell 15(4), 2003
PMID: 12671089
Photosynthetic control of chloroplast gene expression
Pfannschmidt T, Nilsson A, Allen JF., 1999
Principles of redox control in photosynthesis gene expression
Pfannschmidt T, Allen JF, Oelmüller R., 2001
Synergism of red and blue light in the control of Arabidopsis gene expression and development.
Sellaro R, Hoecker U, Yanovsky M, Chory J, Casal JJ., Curr. Biol. 19(14), 2009
PMID: 19559617
Jasmonate signaling: a conserved mechanism of hormone sensing.
Katsir L, Chung HS, Koo AJ, Howe GA., Curr. Opin. Plant Biol. 11(4), 2008
PMID: 18583180
Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis.
Park SW, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MM, Luan S, Esker AR, Tholl D, Cimini D, Ellerstrom M, Coaker G, Mitchell TK, Pereira A, Dietz KJ, Lawrence CB., Proc. Natl. Acad. Sci. U.S.A. 110(23), 2013
PMID: 23671085
Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves
Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y., 1998
Signalling of abscisic acid to regulate plant growth.
Himmelbach A, Iten M, Grill E., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353(1374), 1998
PMID: 9800207
Approaching cellular and molecular resolution of auxin biosynthesis and metabolism
Normanly J., 2010
Stress homeostasis - the redox and auxin perspective.
Tognetti VB, Muhlenbock P, Van Breusegem F., Plant Cell Environ. 35(2), 2011
PMID: 21443606
Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
Young AJ, Frank HA., J. Photochem. Photobiol. B, Biol. 36(1), 1996
PMID: 8988608
Plant defense in the absence of jasmonic acid: the role of cyclopentenones
Stintzi A, Weber H, Reymond P, Browse J, Farmer EE., 2001
The lipoxygenase pathway.
Feussner I, Wasternack C., Annu Rev Plant Biol 53(), 2002
PMID: 12221977
A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts
Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, Luan S., 2008
General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S., Plant Cell 20(3), 2008
PMID: 18334669
Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59.
Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Korbes AP, Memelink J, Ritsema T, Van Wees SC, Pieterse CM., Plant Cell 25(2), 2013
PMID: 23435661
The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis.
Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D., Plant Cell 14(8), 2002
PMID: 12172031
Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation.
Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, Pieterse CM., Plant Physiol. 147(3), 2008
PMID: 18539774
Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis.
Muhlenbock P, Szechynska-Hebda M, Plaszczyca M, Baudo M, Mateo A, Mullineaux PM, Parker JE, Karpinska B, Karpinski S., Plant Cell 20(9), 2008
PMID: 18790826
Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases.
Bonardi V, Pesaresi P, Becker T, Schleiff E, Wagner R, Pfannschmidt T, Jahns P, Leister D., Nature 437(7062), 2005
PMID: 16237446
The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells.
Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineaux PM., Plant Cell 21(7), 2009
PMID: 19638476
Summaries of Affymetrix GeneChip probe level data.
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP., Nucleic Acids Res. 31(4), 2003
PMID: 12582260
Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals.
Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R., Plant Physiol. 156(2), 2011
PMID: 21502188
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini Y, Hochberg Y., 1995
On the adaptive control of the false discovery rate in multiple testing with independent statistics
Benjamini Y, Hochberg Y., 2000
Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability.
Wormuth D, Baier M, Kandlbinder A, Scheibe R, Hartung W, Dietz KJ., BMC Plant Biol. 6(), 2006
PMID: 16916444
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24591725
PubMed | Europe PMC

Suchen in

Google Scholar