Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis

Dalal A, Kumar A, Yadav D, Gudla T, Viehhauser A, Dietz K-J, Kirti PB (2014)
Plant Science 219-220: 9-18.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dalal, Ahan; Kumar, Abhay; Yadav, Deepanker; Gudla, Triveni; Viehhauser, AndreaUniBi; Dietz, Karl-JosefUniBi; Kirti, Pulugurtha Bharadwaja
Abstract / Bemerkung
Plant annexins function as calcium-dependent or -independent phospholipid binding proteins and constitute about 0.1% of total cellular proteins. Some of them were reported to antagonize oxidative stress and protect plant cells. Brassica juncea annexin-3 (AnnBj3) was recently discovered. To gain insight into a possible function of AnnBj3 in oxidative stress response, we investigated the resistance of Arabidopsis thaliana plants expressing AnnBj3 constitutively. Here we report that, AnnBj3 attenuates methyl viologen-mediated oxidative stress in plants. It protected photosynthesis and plasma membrane from methyl viologen-mediated oxidative damage. AnnBj3 detoxifies hydrogen peroxide and showed antioxidative property in vitro. The protein increased total peroxidase activity in transgenics and interfered with other cellular antioxidants, thereby giving an overall cellular protection against methyl viologen-induced cytotoxicity.
Erscheinungsjahr
2014
Zeitschriftentitel
Plant Science
Band
219-220
Seite(n)
9-18
ISSN
0168-9452
Page URI
https://pub.uni-bielefeld.de/record/2662364

Zitieren

Dalal A, Kumar A, Yadav D, et al. Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. Plant Science. 2014;219-220:9-18.
Dalal, A., Kumar, A., Yadav, D., Gudla, T., Viehhauser, A., Dietz, K. - J., & Kirti, P. B. (2014). Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. Plant Science, 219-220, 9-18. doi:10.1016/j.plantsci.2013.12.016
Dalal, Ahan, Kumar, Abhay, Yadav, Deepanker, Gudla, Triveni, Viehhauser, Andrea, Dietz, Karl-Josef, and Kirti, Pulugurtha Bharadwaja. 2014. “Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis”. Plant Science 219-220: 9-18.
Dalal, A., Kumar, A., Yadav, D., Gudla, T., Viehhauser, A., Dietz, K. - J., and Kirti, P. B. (2014). Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. Plant Science 219-220, 9-18.
Dalal, A., et al., 2014. Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. Plant Science, 219-220, p 9-18.
A. Dalal, et al., “Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis”, Plant Science, vol. 219-220, 2014, pp. 9-18.
Dalal, A., Kumar, A., Yadav, D., Gudla, T., Viehhauser, A., Dietz, K.-J., Kirti, P.B.: Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis. Plant Science. 219-220, 9-18 (2014).
Dalal, Ahan, Kumar, Abhay, Yadav, Deepanker, Gudla, Triveni, Viehhauser, Andrea, Dietz, Karl-Josef, and Kirti, Pulugurtha Bharadwaja. “Alleviation of methyl viologen-mediated oxidative stress by Brassica juncea annexin-3 in transgenic Arabidopsis”. Plant Science 219-220 (2014): 9-18.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effects of Exogenous Melatonin on Methyl Viologen-Mediated Oxidative Stress in Apple Leaf.
Wei Z, Gao T, Liang B, Zhao Q, Ma F, Li C., Int J Mol Sci 19(1), 2018
PMID: 29361738
ANN1 and ANN2 Function in Post-Phloem Sugar Transport in Root Tips to Affect Primary Root Growth.
Wang J, Song J, Clark G, Roux SJ., Plant Physiol 178(1), 2018
PMID: 30018170
Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco.
Yadav D, Ahmed I, Shukla P, Boyidi P, Kirti PB., Plants (Basel) 5(2), 2016
PMID: 27135239
A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2.
Qiao B, Zhang Q, Liu D, Wang H, Yin J, Wang R, He M, Cui M, Shang Z, Wang D, Zhu Z., J Exp Bot 66(19), 2015
PMID: 26085678
Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D., PLoS One 10(7), 2015
PMID: 26172952

73 References

Daten bereitgestellt von Europe PubMed Central.

Annexin gene structures and molecular evolutionary genetics
Morgan, Cellular and Molecular Life Sciences (CMLS) 53(), 1997
Annexins in the plant kingdom: perspectives and potentials
Hofmann, Annexins 1(), 2004
Annexins: multifunctional components of growth and adaptation.
Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM., J. Exp. Bot. 59(3), 2008
PMID: 18267940
Identification of Ca2+-dependent phospholipid-binding proteins in higher plant cells
Boustead, FEBS Letters 244(), 1989
Properties and partial protein sequence of plant annexins.
Blackbourn HD, Barker PJ, Huskisson NS, Battey NH., Plant Physiol. 99(3), 1992
PMID: 16669013
Immunological and biochemical evidence for nuclear localization of annexin in peas.
Clark GB, Dauwalder M, Roux SJ, Roux SJ., Plant Physiol. Biochem. 36(9), 1998
PMID: 11542469
Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa.
Kovacs I, Ayaydin F, Oberschall A, Ipacs I, Bottka S, Pongor S, Dudits D, Toth EC., Plant J. 15(2), 1998
PMID: 9721677
The crystal structure of annexin Gh1 from Gossypium hirsutum reveals an unusual S3 cluster.
Hofmann A, Delmer DP, Wlodawer A., Eur. J. Biochem. 270(12), 2003
PMID: 12787021
Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis
Lee, The Plant Cell Online 16(), 2004
Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress.
Cantero A, Barthakur S, Bushart TJ, Chou S, Morgan RO, Fernandez MP, Clark GB, Roux SJ., Plant Physiol. Biochem. 44(1), 2006
PMID: 16531057
The role of annexin 1 in drought stress in Arabidopsis.
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J., Plant Physiol. 150(3), 2009
PMID: 19482919
Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco.
Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB., Plant Physiol. Biochem. 46(12), 2008
PMID: 18768323
Molecular cloning and characterization of five annexin genes from Indian mustard (Brassica juncea L. Czern and Coss).
Jami SK, Dalal A, Divya K, Kirti PB., Plant Physiol. Biochem. 47(11-12), 2009
PMID: 19758812
Identification and characterization of annexin gene family in rice.
Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti PB., Plant Cell Rep. 31(5), 2011
PMID: 22167239
Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses
Huh, Plant and Cell Physiology 51(), 2010
Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance
Laohavisit, The Plant Cell Online 21(), 2009
Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+- and K+-permeable conductance in root cells
Laohavisit, The Plant Cell Online 24(), 2012
Cloning and characterization of an annexin gene from Cynanchum komarovii that enhances tolerance to drought and Fusarium oxysporum in transgenic cotton
Zhang, Journal of Plant Biology 54(), 2011
Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.
Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L, Tsang EW, Wu K, Huang S., Planta 235(6), 2011
PMID: 22167260
Induction of annexin by heavy metals and jasmonic acid in Zea mays.
Zhou ML, Yang XB, Zhang Q, Zhou M, Zhao EZ, Tang YX, Zhu XM, Shao JR, Wu YM., Funct. Integr. Genomics 13(2), 2013
PMID: 23474989
Structural determinants for plant annexin-membrane interactions.
Dabitz N, Hu NJ, Yusof AM, Tranter N, Winter A, Daley M, Zschornig O, Brisson A, Hofmann A., Biochemistry 44(49), 2005
PMID: 16331990
Annexins.
Laohavisit A, Davies JM., New Phytol. 189(1), 2010
PMID: 21083562
Peroxidase activity of annexin 1 from Arabidopsis thaliana.
Gorecka KM, Konopka-Postupolska D, Hennig J, Buchet R, Pikula S., Biochem. Biophys. Res. Commun. 336(3), 2005
PMID: 16153598
Structure, function and membrane interactions of plant annexins: an update.
Konopka-Postupolska D, Clark G, Hofmann A., Plant Sci. 181(3), 2011
PMID: 21763533
Structures and functions of annexins in plants
Delmer, Cellular and Molecular Life Sciences (CMLS) 53(), 1997
Redox regulation of cysteine-dependent enzymes.
Guttmann RP., J. Anim. Sci. 88(4), 2009
PMID: 19820057
Annexin-like protein from Arabidopsis thaliana rescues delta oxyR mutant of Escherichia coli from H2O2 stress
Gidrol, Proceedings of the National Academy of Sciences, USA 93(), 1996
Isolation of plant DNA from fresh tissue
Doyle, Focus 12(), 1990
Hydroperoxide assay with the ferric-xylenol orange complex.
Gay C, Collins J, Gebicki JM., Anal. Biochem. 273(2), 1999
PMID: 10469484
Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes.
Hirasawa M, Schurmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC, Knaff DB., Biochemistry 38(16), 1999
PMID: 10213627
Changes in glutathione reductase activity and protein content in wheat leaves and chloloplasts exposed to photooxidative stress
Lascano, Plant Physiology and Biochemistry 36(), 1998
Antioxidant system response of different wheat cultivars under drought: field and in vitro studies
Lascano, Functional Plant Biology 28(), 2001
Effect of photooxidative stress induced by paraquat in two wheat cultivars with differential tolerance to water stress
Lascano, Plant Science 164(), 2003
Systematic analysis of superoxide-dependent signaling in plant cells. Usefulness and specificity of methyl viologen application
Jacob, 2009
Paraquat: an oxidative stress inducer
Lascano, 2012
The dissipation of excess excitation energy in British plant species
Johnson, Plant, Cell & Environment 16(), 1993
Oxidized phospholipids induce phase separation in lipid vesicles.
Megli FM, Russo L, Sabatini K., FEBS Lett. 579(21), 2005
PMID: 16098528
Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system.
Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S., Plant Physiol. 144(1), 2007
PMID: 17337521
Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling.
del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB., Plant Physiol. 141(2), 2006
PMID: 16760483
Production of reactive oxygen species by plant NADPH oxidases.
Sagi M, Fluhr R., Plant Physiol. 141(2), 2006
PMID: 16760484
The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux
König, Proceedings of the National Academy of Sciences, USA 99(), 2002
Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R., Plant J. 52(5), 2007
PMID: 17892447
AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis.
Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C., J. Exp. Bot. 63(10), 2012
PMID: 22447966
The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase (sAPX) gene expression
Klein, Frontiers in Plant Science 3(), 2012
Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants.
Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D., EMBO J. 10(7), 1991
PMID: 2050109
Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase
Gupta, Proceedings of the National Academy of Sciences, USA 90(), 1993
Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts.
Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L., Plant Physiol. 112(4), 1996
PMID: 8972606
A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis
Myouga, The Plant Cell Online 20(), 2008
Study of oxidative stress related responses induced in Arabidopsis thaliana following mixed exposure to uranium and cadmium.
Vanhoudt N, Vandenhove H, Horemans N, Wannijn J, Bujanic A, Vangronsveld J, Cuypers A., Plant Physiol. Biochem. 48(10-11), 2010
PMID: 20822913
Annexin A2 is a novel cellular redox regulatory protein involved in tumorigenesis.
Madureira PA, Hill R, Miller VA, Giacomantonio C, Lee PW, Waisman DM., Oncotarget 2(12), 2011
PMID: 22185818
The plant multigenic family of thiol peroxidases
Rouhier, Free Radical Biology and Medicine 38(), 2005
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Annexin A2: the importance of being redox sensitive.
Madureira PA, Waisman DM., Int J Mol Sci 14(2), 2013
PMID: 23434659
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24576759
PubMed | Europe PMC

Suchen in

Google Scholar