Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique

Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J (2013)
BMC Genomics 14(1): 888.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
BACKGROUND: The use of RNAseq to resolve the transcriptional organization of an organism was established in recent years and also showed the complexity and dynamics of bacterial transcriptomes. The aim of this study was to comprehensively investigate the transcriptome of the industrially relevant amino acid producer and model organism Corynebacterium glutamicum by RNAseq in order to improve its genome annotation and to describe important features for transcription and translation. RESULTS: RNAseq data sets were obtained by two methods, one that focuses on 5[prime]-ends of primary transcripts and another that provides the overall transcriptome with an improved resolution of 3[prime]-ends of transcripts. Subsequent data analysis led to the identification of more than 2,000 transcription start sites (TSSs), the definition of 5[prime]-UTRs (untranslated regions) for annotated protein-coding genes, operon structures and many novel transcripts located between or in antisense orientation to protein-coding regions. Interestingly, a high number of mRNAs (33%) is transcribed as leaderless transcripts. From the data, consensus promoter and ribosome binding site (RBS) motifs were identified and it was shown that the majority of genes in C. glutamicum are transcribed monocistronically, but operons containing up to 16 genes are also present. CONCLUSIONS: The comprehensive transcriptome map of C. glutamicum established in this study represents a major step forward towards a complete definition of genetic elements (e.g. promoter regions, gene starts and stops, 5[prime]-UTRs, RBSs, transcript starts and ends) and provides the ideal basis for further analyses on transcriptional regulatory networks in this organism. The methods developed are easily applicable for other bacteria and have the potential to be used also for quantification of transcriptomes, replacing microarrays in the near future.
Erscheinungsjahr
2013
Zeitschriftentitel
BMC Genomics
Band
14
Ausgabe
1
Seite(n)
888
ISSN
1471-2164
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
Page URI
https://pub.uni-bielefeld.de/record/2643373

Zitieren

Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics. 2013;14(1):888.
Pfeifer-Sancar, K., Mentz, A., Rückert, C., & Kalinowski, J. (2013). Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics, 14(1), 888. doi:10.1186/1471-2164-14-888
Pfeifer-Sancar, K., Mentz, A., Rückert, C., and Kalinowski, J. (2013). Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 14, 888.
Pfeifer-Sancar, K., et al., 2013. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics, 14(1), p 888.
K. Pfeifer-Sancar, et al., “Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique”, BMC Genomics, vol. 14, 2013, pp. 888.
Pfeifer-Sancar, K., Mentz, A., Rückert, C., Kalinowski, J.: Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics. 14, 888 (2013).
Pfeifer-Sancar, Katharina, Mentz, Almut, Rückert, Christian, and Kalinowski, Jörn. “Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique”. BMC Genomics 14.1 (2013): 888.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:20Z
MD5 Prüfsumme
7e1057232ae5e559cf438e07b3eee11f

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24341750
PubMed | Europe PMC

Suchen in

Google Scholar