Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells

Müller S, Galliardt H, Schneider J, Barisas BG, Seidel T (2013)
Frontiers in Plant Science 4: 413.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Förster resonance energy transfer (FRET) describes excitation energy exchange between two adjacent molecules typically in distances ranging from 2 to 10 nm. The process depends on dipole-dipole coupling of the molecules and its probability of occurrence cannot be proven directly. Mostly, fluorescence is employed for quantification as it represents a concurring process of relaxation of the excited singlet state S1 so that the probability of fluorescence decreases as the probability of FRET increases. This reflects closer proximity of the molecules or an orientation of donor and acceptor transition dipoles that facilitates FRET. Monitoring sensitized emission by 3-Filter-FRET allows for fast image acquisition and is suitable for quantifying FRET in dynamic systems such as living cells. In recent years, several calibration protocols were established to overcome to previous difficulties in measuring FRET-efficiencies. Thus, we can now obtain by 3-filter FRET FRET-efficiencies that are comparable to results from sophisticated fluorescence lifetime measurements. With the discovery of fluorescent proteins and their improvement toward spectral variants and usability in plant cells, the tool box for in vivo FRET-analyses in plant cells was provided and FRET became applicable for the in vivo detection of protein-protein interactions and for monitoring conformational dynamics. The latter opened the door toward a multitude of FRET-sensors such as the widely applied Ca(2+)-sensor Cameleon. Recently, FRET-couples of two fluorescent proteins were supplemented by additional fluorescent proteins toward FRET-cascades in order to monitor more complex arrangements. Novel FRET-couples involving switchable fluorescent proteins promise to increase the utility of FRET through combination with photoactivation-based super-resolution microscopy.
Erscheinungsjahr
2013
Zeitschriftentitel
Frontiers in Plant Science
Band
4
Art.-Nr.
413
ISSN
1664-462X
Page URI
https://pub.uni-bielefeld.de/record/2634390

Zitieren

Müller S, Galliardt H, Schneider J, Barisas BG, Seidel T. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Frontiers in Plant Science. 2013;4: 413.
Müller, S., Galliardt, H., Schneider, J., Barisas, B. G., & Seidel, T. (2013). Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Frontiers in Plant Science, 4, 413. doi:10.3389/fpls.2013.00413
Müller, Sara, Galliardt, Helena, Schneider, Jessica, Barisas, B. George, and Seidel, Thorsten. 2013. “Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells”. Frontiers in Plant Science 4: 413.
Müller, S., Galliardt, H., Schneider, J., Barisas, B. G., and Seidel, T. (2013). Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Frontiers in Plant Science 4:413.
Müller, S., et al., 2013. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Frontiers in Plant Science, 4: 413.
S. Müller, et al., “Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells”, Frontiers in Plant Science, vol. 4, 2013, : 413.
Müller, S., Galliardt, H., Schneider, J., Barisas, B.G., Seidel, T.: Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Frontiers in Plant Science. 4, : 413 (2013).
Müller, Sara, Galliardt, Helena, Schneider, Jessica, Barisas, B. George, and Seidel, Thorsten. “Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells”. Frontiers in Plant Science 4 (2013): 413.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:19Z
MD5 Prüfsumme
dc114daa7b682607f29e406581b436de


23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells.
Wang L, Xue Y, Xing J, Song K, Lin J., Annu Rev Plant Biol 69(), 2018
PMID: 29489393
Targeting Phosphopeptide Recognition by the Human BRCA1 Tandem BRCT Domain to Interrupt BRCA1-Dependent Signaling.
Periasamy J, Kurdekar V, Jasti S, Nijaguna MB, Boggaram S, Hurakadli MA, Raina D, Kurup LM, Chintha C, Manjunath K, Goyal A, Sadasivam G, Bharatham K, Padigaru M, Potluri V, Venkitaraman AR., Cell Chem Biol 25(6), 2018
PMID: 29606576
Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.
Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L., Nat Chem Biol 14(6), 2018
PMID: 29686359
Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.
Shcherbakova DM, Stepanenko OV, Turoverov KK, Verkhusha VV., Trends Biotechnol 36(12), 2018
PMID: 30041828
Conformational changes in inhibitory PAS domain protein associated with binding of HIF-1α and Bcl-xL in living cells.
Kasai S, Kajimoto S, Ito Y, Saito T, Yasumoto KI, Tokunaga M, Sakata-Sogawa K, Fukumura H, Sogawa K., J Biochem 161(3), 2017
PMID: 28003430
PII Protein-Derived FRET Sensors for Quantification and Live-Cell Imaging of 2-Oxoglutarate.
Lüddecke J, Francois L, Spät P, Watzer B, Chilczuk T, Poschet G, Hell R, Radlwimmer B, Forchhammer K., Sci Rep 7(1), 2017
PMID: 28469248
Quantitatively Understanding Plant Signaling: Novel Theoretical-Experimental Approaches.
Samodelov SL, Zurbriggen MD., Trends Plant Sci 22(8), 2017
PMID: 28668509
Conserved redox-dependent DNA binding of ROXY glutaredoxins with TGA transcription factors.
Gutsche N, Holtmannspötter M, Maß L, O'Donoghue M, Busch A, Lauri A, Schubert V, Zachgo S., Plant Direct 1(6), 2017
PMID: 31245678
Techniques for the Analysis of Protein-Protein Interactions in Vivo.
Xing S, Wallmeroth N, Berendzen KW, Grefen C., Plant Physiol 171(2), 2016
PMID: 27208310
NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana.
Myers ZA, Kumimoto RW, Siriwardana CL, Gayler KK, Risinger JR, Pezzetta D, Holt Iii BF., PLoS Genet 12(9), 2016
PMID: 27685091
Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues.
Mizuta Y, Kurihara D, Higashiyama T., Protoplasma 252(5), 2015
PMID: 25588923
Understanding FRET as a research tool for cellular studies.
Shrestha D, Jenei A, Nagy P, Vereb G, Szöllősi J., Int J Mol Sci 16(4), 2015
PMID: 25815593
Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J., Biotechnol Adv 33(6 pt 2), 2015
PMID: 25819757
Binary 2in1 Vectors Improve in Planta (Co)localization and Dynamic Protein Interaction Studies.
Hecker A, Wallmeroth N, Peter S, Blatt MR, Harter K, Grefen C., Plant Physiol 168(3), 2015
PMID: 25971551
Fluorescent proteins as genetically encoded FRET biosensors in life sciences.
Hochreiter B, Garcia AP, Schmid JA., Sensors (Basel) 15(10), 2015
PMID: 26501285
ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging.
Kurihara D, Mizuta Y, Sato Y, Higashiyama T., Development 142(23), 2015
PMID: 26493404
Functional imaging in living plants-cell biology meets physiology.
Littlejohn GR, Meckel T, Schwarzländer M, Costa A., Front Plant Sci 5(), 2014
PMID: 25566307
Noninvasive high-throughput single-cell analysis of HIV protease activity using ratiometric flow cytometry.
Gaber R, Majerle A, Jerala R, Benčina M., Sensors (Basel) 13(12), 2013
PMID: 24287545

130 References

Daten bereitgestellt von Europe PubMed Central.

Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength
Agati G.., 1998
The origin of lignin fluorescence
Albinsson B., Li S., Lundquist K., Stomberg R.., 1999
Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral.
Baird GS, Zacharias DA, Tsien RY., Proc. Natl. Acad. Sci. U.S.A. 97(22), 2000
PMID: 11050229
FRET and FLIM applications in plants
Bhat R.., 2009
Dark proteins disturb multichromophore coupling in tetrameric fluorescent proteins.
Blum C, Meixner AJ, Subramaniam V., J Biophotonics 4(1-2), 2010
PMID: 20635430
A monomeric red fluorescent protein.
Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY., Proc. Natl. Acad. Sci. U.S.A. 99(12), 2002
PMID: 12060735
Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants.
Chaudhuri B, Hormann F, Frommer WB., J. Exp. Bot. 62(7), 2011
PMID: 21266495
Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions.
Chen Y, Mauldin JP, Day RN, Periasamy A., J Microsc 228(Pt 2), 2007
PMID: 17970914
Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells.
Chen H, Puhl HL 3rd, Koushik SV, Vogel SS, Ikeda SR., Biophys. J. 91(5), 2006
PMID: 16815904
Resonance energy transfer
Cheung H.., 1991
A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions.
Chu J, Zhang Z, Zheng Y, Yang J, Qin L, Lu J, Huang ZL, Zeng S, Luo Q., Biosens Bioelectron 25(1), 2009
PMID: 19596565
Förster resonance energy transfer- FRET what it is, why do it, and how it's done
Clegg R.., 2009
Understanding, improving and using green fluorescent proteins.
Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY., Trends Biochem. Sci. 20(11), 1995
PMID: 8578587
In vivo HIV-1 Rev multimerization in the nucleolus and cytoplasm identified by fluorescence resonance energy transfer.
Daelemans D, Costes SV, Cho EH, Erwin-Cohen RA, Lockett S, Pavlakis GN., J. Biol. Chem. 279(48), 2004
PMID: 15294891
Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
Dinant C, van Royen ME, Vermeulen W, Houtsmuller AB., J Microsc 231(Pt 1), 2008
PMID: 18638193
Deconvolution of fluorescence spectra: contribution to the structural analysis of complex molecules.
Djikanovic D, Kalauzi A, Jeremic M, Micic M, Radotic K., Colloids Surf B Biointerfaces 54(2), 2006
PMID: 17134884
Imaging FRET standards by steady-state fluorescence and lifetime methods.
Domingo B, Sabariegos R, Picazo F, Llopis J., Microsc. Res. Tech. 70(12), 2007
PMID: 17722057
Ultrastructure of acridine alkaloid idioblasts in roots and cell cultures of Ruta graveolens
Eilert U., Wolters B., Constabel F.., 1986
DsRed as a potential FRET partner with CFP and GFP.
Erickson MG, Moon DL, Yue DT., Biophys. J. 85(1), 2003
PMID: 12829514
Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein-protein interactions in living cells.
Fan JY, Cui ZQ, Wei HP, Zhang ZP, Zhou YF, Wang YP, Zhang XE., Biochem. Biophys. Res. Commun. 367(1), 2007
PMID: 18158915
Energiewanderung und Fluoreszenz
Förster T.., 1946
Intermolecular energy migration and fluorescence
Förster T.., 1948
The single T65S mutation generates brighter cyan fluorescent proteins with increased photostability and pH insensitivity.
Fredj A, Pasquier H, Demachy I, Jonasson G, Levy B, Derrien V, Bousmah Y, Manoussaris G, Wien F, Ridard J, Erard M, Merola F., PLoS ONE 7(11), 2012
PMID: 23133673
GFP-based FRET microscopy in living plant cells.
Gadella TW Jr, van der Krogt GN , Bisseling T., Trends Plant Sci. 4(7), 1999
PMID: 10407445
Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells.
Galperin E, Verkhusha VV, Sorkin A., Nat. Methods 1(3), 2004
PMID: 15782196
Light resonance energy transfer-based methods in the study of G protein-coupled receptor oligomerization.
Gandia J, Lluis C, Ferre S, Franco R, Ciruela F., Bioessays 30(1), 2008
PMID: 18081019
Betaxanthins as pigments responsible for visible fluorescence in flowers.
Gandia-Herrero F, Escribano J, Garcia-Carmona F., Planta 222(4), 2005
PMID: 16177911
A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Forster resonance energy transfer with GFP.
Ganesan S, Ameer-Beg SM, Ng TT, Vojnovic B, Wouters FS., Proc. Natl. Acad. Sci. U.S.A. 103(11), 2006
PMID: 16537489
Time domain FLIM: theory, instrumentation, and data analysis
Gerritsen H., Agronskaia A., Bader A., Esposito A.., 2009
Carotenoid fluorescence
Gillbro T., Cogdell R.., 1989
Bright cyan fluorescent protein variants identified by fluorescence lifetime screening.
Goedhart J, van Weeren L, Hink MA, Vischer NO, Jalink K, Gadella TW Jr., Nat. Methods 7(2), 2010
PMID: 20081836
Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
Goedhart J, Vermeer JE, Adjobo-Hermans MJ, van Weeren L, Gadella TW Jr., PLoS ONE 2(10), 2007
PMID: 17925859
Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%.
Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TW Jr, Royant A., Nat Commun 3(), 2012
PMID: 22434194
Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy.
Gordon GW, Berry G, Liang XH, Levine B, Herman B., Biophys. J. 74(5), 1998
PMID: 9591694
Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications.
Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY., J. Biol. Chem. 276(31), 2001
PMID: 11387331
Triple FRET: a tool for studying long-range molecular interactions.
Haustein E, Jahnz M, Schwille P., Chemphyschem 4(7), 2003
PMID: 12901306
TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-{kappa}B activation.
He L, Grammer AC, Wu X, Lipsky PE., J. Biol. Chem. 279(53), 2004
PMID: 15383523
Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine).
Heikal AA, Hess ST, Baird GS, Tsien RY, Webb WW., Proc. Natl. Acad. Sci. U.S.A. 97(22), 2000
PMID: 11050231
Signal transfer in the plant plasma membrane: phospholipase A(2) is regulated via an inhibitory Gα protein and a cyclophilin.
Heinze M, Herre M, Massalski C, Hermann I, Conrad U, Roos W., Biochem. J. 450(3), 2013
PMID: 23252374
Imaging protein-protein interactions in living cells.
Hink MA, Bisselin T, Visser AJ., Plant Mol. Biol. 50(6), 2002
PMID: 12516859
Fluorescence resonance energy transfer-based stoichiometry in living cells.
Hoppe A, Christensen K, Swanson JA., Biophys. J. 83(6), 2002
PMID: 12496132
Enhancement of folates in plants through metabolic engineering.
Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R, Schubert K., Proc. Natl. Acad. Sci. U.S.A. 101(14), 2004
PMID: 15044686
An improved mRFP1 adds red to bimolecular fluorescence complementation.
Jach G, Pesch M, Richter K, Frings S, Uhrig JF., Nat. Methods 3(8), 2006
PMID: 16862132
Filter FRET: quantitative imaging of sensitized emission
Jalink K., van J.., 2009
FRET imaging.
Jares-Erijman EA, Jovin TM., Nat. Biotechnol. 21(11), 2003
PMID: 14595367
Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser.
Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG., J Microsc 209(Pt 1), 2003
PMID: 12535185
Carotenoid fluorescence in Dunaliella salina.
Kleinegris DM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH., J. Appl. Phycol. 22(5), 2010
PMID: 20835349
Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex.
Kluge C, Seidel T, Bolte S, Sharma SS, Hanitzsch M, Satiat-Jeunemaitre B, Ross J, Sauer M, Golldack D, Dietz KJ., BMC Cell Biol. 5(), 2004
PMID: 15310389
Anomalous surplus energy transfer observed with multiple FRET acceptors.
Koushik SV, Blank PS, Vogel SS., PLoS ONE 4(11), 2009
PMID: 19946626
Cerulean, Venus, and VenusY67C FRET reference standards.
Koushik SV, Chen H, Thaler C, Puhl HL 3rd, Vogel SS., Biophys. J. 91(12), 2006
PMID: 17040988
FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca²⁺ dynamics.
Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K., Plant J. 69(1), 2011
PMID: 21910770
Visible fluorescent proteins for FRET
Kremers G., Goedhart J.., 2009
Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius.
Kremers GJ, Goedhart J, van Munster EB, Gadella TW Jr., Biochemistry 45(21), 2006
PMID: 16716067

Lakowicz J.., 2006
Improving FRET dynamic range with bright green and red fluorescent proteins.
Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, Baird MA, McKeown MR, Wiedenmann J, Davidson MW, Schnitzer MJ, Tsien RY, Lin MZ., Nat. Methods 9(10), 2012
PMID: 22961245
Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET).
Lidke DS, Nagy P, Barisas BG, Heintzmann R, Post JN, Lidke KA, Clayton AH, Arndt-Jovin DJ, Jovin TM., Biochem. Soc. Trans. 31(Pt 5), 2003
PMID: 14505472
An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching.
Markwardt ML, Kremers GJ, Kraft CA, Ray K, Cranfill PJ, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA., PLoS ONE 6(3), 2011
PMID: 21479270
Novel lambda FRET spectral confocal microscopy imaging method.
Megias D, Marrero R, Martinez Del Peso B, Garcia MA, Bravo-Cordero JJ, Garcia-Grande A, Santos A, Montoya MC., Microsc. Res. Tech. 72(1), 2009
PMID: 18785251
Dynamic and quantitative Ca2+ measurements using improved cameleons.
Miyawaki A, Griesbeck O, Heim R, Tsien RY., Proc. Natl. Acad. Sci. U.S.A. 96(5), 1999
PMID: 10051607
Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.
Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY., Nature 388(6645), 1997
PMID: 9278050
Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer.
Mizuno H, Sawano A, Eli P, Hama H, Miyawaki A., Biochemistry 40(8), 2001
PMID: 11327872
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.
Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A., Nat. Biotechnol. 20(1), 2002
PMID: 11753368
Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins.
Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A., Proc. Natl. Acad. Sci. U.S.A. 101(29), 2004
PMID: 15247428
Quantitative imaging with fluorescent biosensors.
Okumoto S, Jones A, Frommer WB., Annu Rev Plant Biol 63(), 2012
PMID: 22404462
Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica.
Otani M, Shitan N, Sakai K, Martinoia E, Sato F, Yazaki K., Plant Physiol. 138(4), 2005
PMID: 16024684
Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
Padilla-Parra S, Auduge N, Coppey-Moisan M, Tramier M., Biophys. J. 95(6), 2008
PMID: 18539634
Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
Padilla-Parra S, Auduge N, Lalucque H, Mevel JC, Coppey-Moisan M, Tramier M., Biophys. J. 97(8), 2009
PMID: 19843469
Forster distances between green fluorescent protein pairs.
Patterson GH, Piston DW, Barisas BG., Anal. Biochem. 284(2), 2000
PMID: 10964438
Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions.
Peter M, Ameer-Beg SM, Hughes MK, Keppler MD, Prag S, Marsh M, Vojnovic B, Ng T., Biophys. J. 88(2), 2004
PMID: 15531633
FRET-based in vivo screening for protein folding and increased protein stability.
Philipps B, Hennecke J, Glockshuber R., J. Mol. Biol. 327(1), 2003
PMID: 12614622
Fluorescent protein FRET: the good, the bad and the ugly.
Piston DW, Kremers GJ., Trends Biochem. Sci. 32(9), 2007
PMID: 17764955
Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences
Pöhlker C., Huffman J., Pöschl U.., 2011
Flow cytometric and fluorometric methods of quantifying and characterizing apoptotic cell death
Poot M., Pierce R., Kavanagh T.., 2002
Enhanced yellow fluorescent protein photoconversion to a cyan fluorescent protein-like species is sensitive to thermal and diffusion conditions.
Raarup MK, Fjorback AW, Jensen SM, Muller HK, Kjaergaard MM, Poulsen H, Wiborg O, Nyengaard JR., J Biomed Opt 14(3), 2009
PMID: 19566331
Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer.
Raicu V, Jansma DB, Miller RJ, Friesen JD., Biochem. J. 385(Pt 1), 2005
PMID: 15352875
Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins.
Rizzo MA, Springer G, Segawa K, Zipfel WR, Piston DW., Microsc. Microanal. 12(3), 2006
PMID: 17481360
An improved cyan fluorescent protein variant useful for FRET.
Rizzo MA, Springer GH, Granada B, Piston DW., Nat. Biotechnol. 22(4), 2004
PMID: 14990965
Vital autofluorescence: application to the study of plant living cells
Roshchina V.., 2012
Changes in pollen autofluorescence induced by ozone
Roshchina V., Karnaukhov V.., 1999
The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.
Schnitzer D, Seidel T, Sander T, Golldack D, Dietz KJ., Plant Cell Physiol. 52(5), 2011
PMID: 21474463
Fluorescent proteins for single-molecule fluorescence applications.
Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz KJ, Heilemann M, Sauer M., J Biophotonics 1(1), 2008
PMID: 19343637
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
Seidel T, Golldack D, Dietz KJ., FEBS Lett. 579(20), 2005
PMID: 16061227
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.
Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D., J. Biotechnol. 112(1-2), 2004
PMID: 15288951
In vivo analysis of the 2-Cys peroxiredoxin oligomeric state by two-step FRET.
Seidel T, Seefeldt B, Sauer M, Dietz KJ., J. Biotechnol. 149(4), 2010
PMID: 20615439
Halide and proton binding kinetics of yellow fluorescent protein variants.
Seward HE, Basran J, Denton R, Pfuhl M, Muskett FW, Bagshaw CR., Biochemistry 52(14), 2013
PMID: 23514090
Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein.
Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY., Nat. Biotechnol. 22(12), 2004
PMID: 15558047
Three-color spectral FRET microscopy localizes three interacting proteins in living cells.
Sun Y, Wallrabe H, Booker CF, Day RN, Periasamy A., Biophys. J. 99(4), 2010
PMID: 20713013
Computer program for analyzing donor photobleaching FRET image series.
Szentesi G, Vereb G, Horvath G, Bodnar A, Fabian A, Matko J, Gaspar R, Damjanovich S, Matyus L, Jenei A., Cytometry A 67(2), 2005
PMID: 16163694
An ultramarine fluorescent protein with increased photostability and pH insensitivity.
Tomosugi W, Matsuda T, Tani T, Nemoto T, Kotera I, Saito K, Horikawa K, Nagai T., Nat. Methods 6(5), 2009
PMID: 19349978
Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments.
Valentin G, Verheggen C, Piolot T, Neel H, Coppey-Moisan M, Bertrand E., Nat. Methods 2(11), 2005
PMID: 16278647
Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
Van Munster EB, Kremers GJ, Adjobo-Hermans MJ, Gadella TW Jr., J Microsc 218(Pt 3), 2005
PMID: 15958019
The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses.
Veerabagu M, Elgass K, Kirchler T, Huppenberger P, Harter K, Chaban C, Mira-Rodado V., Plant J. 72(5), 2012
PMID: 22775331
Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy.
Vermeer JE, Van Munster EB, Vischer NO, Gadella TW Jr., J Microsc 214(Pt 2), 2004
PMID: 15102066
Frequency domain FLIM theory, instrumentation, and data analysis
Verveer P., Hanley Q.., 2009
Immunofluorescence microscopy for localization of Arabidopsis chloroplast proteins.
Vitha S, Osteryoung KW., Methods Mol. Biol. 774(), 2011
PMID: 21822831
Imaging protein molecules using FRET and FLIM microscopy.
Wallrabe H, Periasamy A., Curr. Opin. Biotechnol. 16(1), 2005
PMID: 15722011
Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus.
Wanke D, Hohenstatt ML, Dynowski M, Bloss U, Hecker A, Elgass K, Hummel S, Hahn A, Caesar K, Schleifenbaum F, Harter K, Berendzen KW., PLoS ONE 6(2), 2011
PMID: 21347358
Two-step FRET as a structural tool.
Watrob HM, Pan CP, Barkley MD., J. Am. Chem. Soc. 125(24), 2003
PMID: 12797808
Mitochondrial cysteine synthase complex regulates O-acetylserine biosynthesis in plants.
Wirtz M, Beard KF, Lee CP, Boltz A, Schwarzlander M, Fuchs C, Meyer AJ, Heeg C, Sweetlove LJ, Ratcliffe RG, Hell R., J. Biol. Chem. 287(33), 2012
PMID: 22730323
Kaede for detection of protein oligomerization.
Wolf H, Barisas BG, Dietz KJ, Seidel T., Mol Plant 6(5), 2013
PMID: 23430050
Elements of transcriptional machinery are compatible among plants and mammals.
Wolf A, Akrap N, Marg B, Galliardt H, Heiligentag M, Humpert F, Sauer M, Kaltschmidt B, Kaltschmidt C, Seidel T., PLoS ONE 8(1), 2013
PMID: 23326494
The fluorescence of organic natural products
Wolfbeis O.., 1985
Fluorescence fluctuation spectroscopy of mCherry in living cells.
Wu B, Chen Y, Muller JD., Biophys. J. 96(6), 2009
PMID: 19289064
The molecular structure of green fluorescent protein.
Yang F, Moss LG, Phillips GN Jr., Nat. Biotechnol. 14(10), 1996
PMID: 9631087
Photobleaching-corrected FRET efficiency imaging of live cells.
Zal T, Gascoigne NR., Biophys. J. 86(6), 2004
PMID: 15189889
Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP.
Zapata-Hommer O, Griesbeck O., BMC Biotechnol. 3(), 2003
PMID: 12769828
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24194740
PubMed | Europe PMC

Suchen in

Google Scholar