Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum

Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M (2013)
Journal Of Bacteriology 195(18): 4283-4296.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Klaffl, Simon; Brocker, Melanie; Kalinowski, JörnUniBi; Eikmanns, Bernhard J.; Bott, Michael
Abstract / Bemerkung
DNA affinity chromatography with the promoter region of the Corynebacterium glutamicum pck gene, encoding phosphoenolpyruvate carboxykinase, led to the isolation of four transcriptional regulators, i.e., RamA, GntR1, GntR2, and IolR. Determination of the phosphoenolpyruvate carboxykinase activity of the Delta ramA, Delta gntR1 Delta gntR2, and Delta iolR deletion mutants indicated that RamA represses pck during growth on glucose about 2-fold, whereas GntR1, GntR2, and IolR activate pck expression about 2-fold irrespective of whether glucose or acetate served as the carbon source. The DNA binding sites of the four regulators in the pck promoter region were identified and their positions correlated with the predicted functions as repressor or activators. The iolR gene is located upstream and in a divergent orientation with respect to a iol gene cluster, encoding proteins involved in myo-inositol uptake and degradation. Comparative DNA microarray analysis of the Delta iolR mutant and the parental wild-type strain revealed strongly (>100-fold) elevated mRNA levels of the iol genes in the mutant, indicating that the primary function of IolR is the repression of the iol genes. IolR binding sites were identified in the promoter regions of iolC, iolT1, and iolR. IolR therefore is presumably subject to negative autoregulation. A consensus DNA binding motif (5'-KGWCHTRACA-3') which corresponds well to those of other GntR-type regulators of the HutC family was identified. Taken together, our results disclose a complex regulation of the pck gene in C. glutamicum and identify IolR as an efficient repressor of genes involved in myo-inositol catabolism of this organism.
Erscheinungsjahr
2013
Zeitschriftentitel
Journal Of Bacteriology
Band
195
Ausgabe
18
Seite(n)
4283-4296
ISSN
0021-9193
Page URI
https://pub.uni-bielefeld.de/record/2625606

Zitieren

Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M. Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum. Journal Of Bacteriology. 2013;195(18):4283-4296.
Klaffl, S., Brocker, M., Kalinowski, J., Eikmanns, B. J., & Bott, M. (2013). Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum. Journal Of Bacteriology, 195(18), 4283-4296. doi:10.1128/JB.00265-13
Klaffl, Simon, Brocker, Melanie, Kalinowski, Jörn, Eikmanns, Bernhard J., and Bott, Michael. 2013. “Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum”. Journal Of Bacteriology 195 (18): 4283-4296.
Klaffl, S., Brocker, M., Kalinowski, J., Eikmanns, B. J., and Bott, M. (2013). Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum. Journal Of Bacteriology 195, 4283-4296.
Klaffl, S., et al., 2013. Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum. Journal Of Bacteriology, 195(18), p 4283-4296.
S. Klaffl, et al., “Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum”, Journal Of Bacteriology, vol. 195, 2013, pp. 4283-4296.
Klaffl, S., Brocker, M., Kalinowski, J., Eikmanns, B.J., Bott, M.: Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum. Journal Of Bacteriology. 195, 4283-4296 (2013).
Klaffl, Simon, Brocker, Melanie, Kalinowski, Jörn, Eikmanns, Bernhard J., and Bott, Michael. “Complex Regulation of the Phosphoenolpyruvate Carboxykinase Gene pck and Characterization of Its GntR-Type Regulator IolR as a Repressor of myo-Inositol Utilization Genes in Corynebacterium glutamicum”. Journal Of Bacteriology 195.18 (2013): 4283-4296.

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869.
Gao Y, Hu X, Wang J, Li H, Wang X., Biotechnol Appl Biochem 65(3), 2018
PMID: 29072327
Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
Kallscheuer N, Marienhagen J., Microb Cell Fact 17(1), 2018
PMID: 29753327
The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum.
Shah A, Blombach B, Gauttam R, Eikmanns BJ., Appl Microbiol Biotechnol 102(14), 2018
PMID: 29804137
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved d-xylose utilization.
Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S., Bioresour Technol 245(pt b), 2017
PMID: 28552568
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
Cleto S, Jensen JV, Wendisch VF, Lu TK., ACS Synth Biol 5(5), 2016
PMID: 26829286
Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production.
Man Z, Xu M, Rao Z, Guo J, Yang T, Zhang X, Xu Z., Sci Rep 6(), 2016
PMID: 27338253
Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.
Vogt M, Haas S, Polen T, van Ooyen J, Bott M., Microb Biotechnol 8(2), 2015
PMID: 25488800
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
Deciphering the Regulatory Circuitry That Controls Reversible Lysine Acetylation in Salmonella enterica.
Hentchel KL, Thao S, Intile PJ, Escalante-Semerena JC., MBio 6(4), 2015
PMID: 26199328
Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.
Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M., Metab Eng 22(), 2014
PMID: 24333966
Genome-wide analysis of the role of global transcriptional regulator GntR1 in Corynebacterium glutamicum.
Tanaka Y, Takemoto N, Ito T, Teramoto H, Yukawa H, Inui M., J Bacteriol 196(18), 2014
PMID: 24982307
IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria.
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J., BMC Biol 11(), 2013
PMID: 24377418

84 References

Daten bereitgestellt von Europe PubMed Central.

Industrial production of amino acids by coryneform bacteria.
Hermann T., J. Biotechnol. 104(1-3), 2003
PMID: 12948636
Biotechnological production of amino acids and derivatives: current status and prospects.
Leuchtenberger W, Huthmacher K, Drauz K., Appl. Microbiol. Biotechnol. 69(1), 2005
PMID: 16195792
Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.
Stabler N, Oikawa T, Bott M, Eggeling L., J. Bacteriol. 193(7), 2011
PMID: 21257776
Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum.
Litsanov B, Kabus A, Brocker M, Bott M., Microb Biotechnol 5(1), 2011
PMID: 22018023
An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 81(3), 2008
PMID: 18777022
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.
Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H., J. Mol. Microbiol. Biotechnol. 8(4), 2004
PMID: 16179801
Engineering Corynebacterium glutamicum for isobutanol production.
Smith KM, Cho KM, Liao JC., Appl. Microbiol. Biotechnol. 87(3), 2010
PMID: 20376637
Anaplerotic sequences and their role in metabolism
Kornberg HL., 1966
Regulation of phospho(enol)-pyruvate- and oxaloacetate-converting enzymes in
Jetten MSM, Pitoc GA, Follettie MT, Sinskey AJ., 1994
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516
Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene.
Peters-Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ., Microbiology (Reading, Engl.) 144 ( Pt 4)(), 1998
PMID: 9579065
Formation of oxaloacetate by CO fixation on phosphoenolpyruvate
Utter MF, Kolenbrander HM., 1972
Expression, purification, and characterization of a bacterial GTP-dependent PEP carboxykinase.
Aich S, Imabayashi F, Delbaere LT., Protein Expr. Purif. 31(2), 2003
PMID: 14550651
Structure of a GTP-dependent bacterial PEP-carboxykinase from Corynebacterium glutamicum.
Aich S, Prasad L, Delbaere LT., Int. J. Biochem. Cell Biol. 40(8), 2007
PMID: 18234538
Characterization of phosphoenolpyruvate carboxykinase from
Jetten MSM, Sinskey AJ., 1993
Phosphoenolpyruvate carboxylase in is dispensable for growth and lysine production
Peters-Wendisch PG, Eikmanns BJ, Thierbach G, Bachmann B, Sahm H., 1993
Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli.
Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr., J. Bacteriol. 186(11), 2004
PMID: 15150239
Global expression profiling of acetate-grown Escherichia coli.
Oh MK, Rohlin L, Kao KC, Liao JC., J. Biol. Chem. 277(15), 2002
PMID: 11815613
The catabolite repressor/activator (Cra) protein of enteric bacteria.
Saier MH Jr, Ramseier TM., J. Bacteriol. 178(12), 1996
PMID: 8655535
Acetate metabolism and its regulation in Corynebacterium glutamicum.
Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ., J. Biotechnol. 104(1-3), 2003
PMID: 12948633
Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase.
Han SO, Inui M, Yukawa H., Microbiology (Reading, Engl.) 153(Pt 7), 2007
PMID: 17600063
RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism.
Auchter M, Cramer A, Huser A, Ruckert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ., J. Biotechnol. 154(2-3), 2010
PMID: 20620178
Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation.
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L., J. Bacteriol. 188(23), 2006
PMID: 16997948

Sambrook J, Fritsch EF, Maniatis T., 1989
Improved media for growing plasmid and cosmid clones
Tartof KD, Hobbs CA., 1987
Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains.
Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H., Appl. Microbiol. Biotechnol. 34(5), 1991
PMID: 1369320
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
A rapid alkaline extraction method for the isolation of plasmid DNA.
Birnboim HC., Meth. Enzymol. 100(), 1983
PMID: 6353143
High efficiency transformation of E. coli by high voltage electroporation.
Dower WJ, Miller JF, Ragsdale CW., Nucleic Acids Res. 16(13), 1988
PMID: 3041370
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies.
Rigali S, Derouaux A, Giannotta F, Dusart J., J. Biol. Chem. 277(15), 2001
PMID: 11756427
myo-Inositol catabolism in Bacillus subtilis.
Yoshida K, Yamaguchi M, Morinaga T, Kinehara M, Ikeuchi M, Ashida H, Fujita Y., J. Biol. Chem. 283(16), 2008
PMID: 18310071
In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum.
Petersen S, de Graaf AA, Eggeling L, Mollney M, Wiechert W, Sahm H., J. Biol. Chem. 275(46), 2000
PMID: 10946002
High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum.
Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, Puhler A, Tauch A., Microbiology (Reading, Engl.) 159(Pt 1), 2012
PMID: 23103979
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM., J. Bacteriol. 188(2), 2006
PMID: 16385030
The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum.
Panhorst M, Sorger-Herrmann U, Wendisch VF., J. Biotechnol. 154(2-3), 2010
PMID: 20638427
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
Regulation of carbon metabolism in
Arndt A, Eikmanns BJ., 2008
Organization and transcriptional regulation of myo-inositol operon in Clostridium perfringens.
Kawsar HI, Ohtani K, Okumura K, Hayashi H, Shimizu T., FEMS Microbiol. Lett. 235(2), 2004
PMID: 15183876
Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis.
Yoshida KI, Aoyama D, Ishio I, Shibayama T, Fujita Y., J. Bacteriol. 179(14), 1997
PMID: 9226270
Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon.
Yoshida KI, Shibayama T, Aoyama D, Fujita Y., J. Mol. Biol. 285(3), 1999
PMID: 9887260
Identification of multiple repressor recognition sites in the hut system of Pseudomonas putida.
Hu L, Allison SL, Phillips AT., J. Bacteriol. 171(8), 1989
PMID: 2666390
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23873914
PubMed | Europe PMC

Suchen in

Google Scholar