Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis

Park S-W, Li W, Viehhauser A, He B, Kim S, Nilsson AK, Andersson MX, Kittle JD, Ambavaram MMR, Luan S, Esker AR, et al. (2013)
Proceedings of the National Academy of Sciences of the United States of America 110(23): 9559-9564.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Park, Sang-Wook; Li, Wei; Viehhauser, AndreaUniBi; He, Bin; Kim, Soonok; Nilsson, Anders K; Andersson, Mats X; Kittle, Joshua D; Ambavaram, Madana M R; Luan, Sheng; Esker, Alan R; Tholl, Dorothea
Abstract / Bemerkung
The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the architecture of their signaling circuits remains largely unknown. Here we describe a jasmonate family binding protein, cyclophilin 20-3 (CYP20-3), which regulates stress-responsive cellular redox homeostasis. (+)-12-oxo-phytodienoic acid (OPDA) binding promotes CYP20-3 to form a complex with serine acetyltransferase 1, which triggers the formation of a hetero-oligomeric cysteine synthase complex with O-acetylserine(thiol)lyase B in chloroplasts. The cysteine synthase complex formation then activates sulfur assimilation that leads to increased levels of thiol metabolites and the buildup of cellular reduction potential. The enhanced redox capacity in turn coordinates the expression of a subset of OPDA-responsive genes. Thus, we conclude that CYP20-3 is a key effector protein that links OPDA signaling to amino acid biosynthesis and cellular redox homeostasis in stress responses.
Proceedings of the National Academy of Sciences of the United States of America
Page URI


Park S-W, Li W, Viehhauser A, et al. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(23):9559-9564.
Park, S. - W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A. K., Andersson, M. X., et al. (2013). Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 110(23), 9559-9564. doi:10.1073/pnas.1218872110
Park, S. - W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A. K., Andersson, M. X., Kittle, J. D., Ambavaram, M. M. R., Luan, S., et al. (2013). Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America 110, 9559-9564.
Park, S.-W., et al., 2013. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 110(23), p 9559-9564.
S.-W. Park, et al., “Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis”, Proceedings of the National Academy of Sciences of the United States of America, vol. 110, 2013, pp. 9559-9564.
Park, S.-W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A.K., Andersson, M.X., Kittle, J.D., Ambavaram, M.M.R., Luan, S., Esker, A.R., Tholl, D., Cimini, D., Ellerström, M., Coaker, G., Mitchell, T.K., Pereira, A., Dietz, K.-J., Lawrence, C.B.: Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 110, 9559-9564 (2013).
Park, Sang-Wook, Li, Wei, Viehhauser, Andrea, He, Bin, Kim, Soonok, Nilsson, Anders K, Andersson, Mats X, Kittle, Joshua D, Ambavaram, Madana M R, Luan, Sheng, Esker, Alan R, Tholl, Dorothea, Cimini, Daniela, Ellerström, Mats, Coaker, Gitta, Mitchell, Thomas K, Pereira, Andy, Dietz, Karl-Josef, and Lawrence, Christopher B. “Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis”. Proceedings of the National Academy of Sciences of the United States of America 110.23 (2013): 9559-9564.

78 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Malate valves: old shuttles with new perspectives.
Selinski J, Scheibe R., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29933514
DOTAP, a lipidic transfection reagent, triggers Arabidopsis plant defense responses.
Grandellis C, Garavaglia BS, Gottig N, Lonez C, Ruysschaert JM, Ottado J., Planta 249(2), 2019
PMID: 30255355
Interference between arsenic-induced toxicity and hypoxia.
Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz KJ., Plant Cell Environ 42(2), 2019
PMID: 30198184
Versatility of Cyclophilins in Plant Growth and Survival: A Case Study in Arabidopsis.
Barbosa Dos Santos I, Park SW., Biomolecules 9(1), 2019
PMID: 30634678
Enzyme activity and structural features of three single-domain phloem cyclophilins from Brassica napus.
Hanhart P, Falke S, Garbe M, Rose V, Thieß M, Betzel C, Kehr J., Sci Rep 9(1), 2019
PMID: 31249367
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid Redox Signal 28(7), 2018
PMID: 28594234
One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.
Maynard D, Müller SM, Hahmeier M, Löwe J, Feussner I, Gröger H, Viehhauser A, Dietz KJ., Bioorg Med Chem 26(7), 2018
PMID: 28818464
ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature.
Miret JA, Munné-Bosch S, Dijkwel PP., Plant Biotechnol J 16(2), 2018
PMID: 28703416
The Oxylipin Pathways: Biochemistry and Function.
Wasternack C, Feussner I., Annu Rev Plant Biol 69(), 2018
PMID: 29166128
An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis.
Chini A, Monte I, Zamarreño AM, Hamberg M, Lassueur S, Reymond P, Weiss S, Stintzi A, Schaller A, Porzel A, García-Mina JM, Solano R., Nat Chem Biol 14(2), 2018
PMID: 29291349
The rolB plant oncogene affects multiple signaling protein modules related to hormone signaling and plant defense.
Bulgakov VP, Vereshchagina YV, Bulgakov DV, Veremeichik GN, Shkryl YN., Sci Rep 8(1), 2018
PMID: 29396465
TGA2 signaling in response to reactive electrophile species is not dependent on cysteine modification of TGA2.
Findling S, Stotz HU, Zoeller M, Krischke M, Zander M, Gatz C, Berger S, Mueller MJ., PLoS One 13(4), 2018
PMID: 29608605
Thiol Based Redox Signaling in Plant Nucleus.
Martins L, Trujillo-Hernandez JA, Reichheld JP., Front Plant Sci 9(), 2018
PMID: 29892308
Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants.
Hasanuzzaman M, Bhuyan MHMB, Mahmud JA, Nahar K, Mohsin SM, Parvin K, Fujita M., Plant Signal Behav 13(5), 2018
PMID: 29939817
Specific adjustments in grapevine leaf proteome discriminating resistant and susceptible grapevine genotypes to Plasmopara viticola.
Figueiredo A, Martins J, Sebastiana M, Guerreiro A, Silva A, Matos AR, Monteiro F, Pais MS, Roepstorff P, Coelho AV., J Proteomics 152(), 2017
PMID: 27989945
Independent Effects of a Herbivore's Bacterial Symbionts on Its Performance and Induced Plant Defences.
Staudacher H, Schimmel BC, Lamers MM, Wybouw N, Groot AT, Kant MR., Int J Mol Sci 18(1), 2017
PMID: 28106771
Accumulation of high OPDA level correlates with reduced ROS and elevated GSH benefiting white cell survival in variegated leaves.
Sun YH, Hung CY, Qiu J, Chen J, Kittur FS, Oldham CE, Henny RJ, Burkey KO, Fan L, Xie J., Sci Rep 7(), 2017
PMID: 28276518
Bioinformatic and expression analysis of the Brassica napus L. cyclophilins.
Hanhart P, Thieß M, Amari K, Bajdzienko K, Giavalisco P, Heinlein M, Kehr J., Sci Rep 7(1), 2017
PMID: 28473712
The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.
Müller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz KJ., Plant J 91(6), 2017
PMID: 28644561
Cyclophilin 20-3 is positioned as a regulatory hub between light-dependent redox and 12-oxo-phytodienoic acid signaling.
Cheong H, Barbosa Dos Santos I, Liu W, Gosse HN, Park SW., Plant Signal Behav 12(9), 2017
PMID: 28805482
Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1.
Grübler B, Merendino L, Twardziok SO, Mininno M, Allorent G, Chevalier F, Liebers M, Blanvillain R, Mayer KFX, Lerbs-Mache S, Ravanel S, Pfannschmidt T., Plant Physiol 175(3), 2017
PMID: 28935841
Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation.
Fernández-Crespo E, Navarro JA, Serra-Soriano M, Finiti I, García-Agustín P, Pallás V, González-Bosch C., Front Plant Sci 8(), 2017
PMID: 29104580
Dissecting Redox Biology Using Fluorescent Protein Sensors.
Schwarzländer M, Dick TP, Meyer AJ, Morgan B., Antioxid Redox Signal 24(13), 2016
PMID: 25867539
Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis.
Groen SC, Humphrey PT, Chevasco D, Ausubel FM, Pierce NE, Whiteman NK., J Insect Physiol 84(), 2016
PMID: 26205072
A previously undescribed jasmonate compound in flowering Arabidopsis thaliana - The identification of cis-(+)-OPDA-Ile.
Floková K, Feussner K, Herrfurth C, Miersch O, Mik V, Tarkowská D, Strnad M, Feussner I, Wasternack C, Novák O., Phytochemistry 122(), 2016
PMID: 26675361
Stress-triggered redox signalling: what's in pROSpect?
Foyer CH, Noctor G., Plant Cell Environ 39(5), 2016
PMID: 26264148
Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond.
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ., Annu Rev Plant Biol 67(), 2016
PMID: 26735063
Hormonal control of sulfate uptake and assimilation.
Koprivova A, Kopriva S., Plant Mol Biol 91(6), 2016
PMID: 26810064
Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.
Dave A, Vaistij FE, Gilday AD, Penfield SD, Graham IA., J Exp Bot 67(8), 2016
PMID: 26873978
Spreading the news: subcellular and organellar reactive oxygen species production and signalling.
Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J., J Exp Bot 67(13), 2016
PMID: 26976816
Functional Analysis of Jasmonates in Rice through Mutant Approaches.
Dhakarey R, Kodackattumannil Peethambaran P, Riemann M., Plants (Basel) 5(1), 2016
PMID: 27135235
Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness.
Wang J, Yu Q, Xiong H, Wang J, Chen S, Yang Z, Dai S., PLoS One 11(5), 2016
PMID: 27137770
Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants.
Nitschke S, Cortleven A, Iven T, Feussner I, Havaux M, Riefler M, Schmülling T., Plant Cell 28(7), 2016
PMID: 27354555
Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors.
Muench M, Hsin CH, Ferber E, Berger S, Mueller MJ., J Exp Bot 67(21), 2016
PMID: 27811081
OPDA Has Key Role in Regulating Plant Susceptibility to the Root-Knot Nematode Meloidogyne hapla in Arabidopsis.
Gleason C, Leelarasamee N, Meldau D, Feussner I., Front Plant Sci 7(), 2016
PMID: 27822219
OPDA-Ile - a new JA-Ile-independent signal?
Wasternack C, Hause B., Plant Signal Behav 11(11), 2016
PMID: 27813689
Synthesis and Functions of Jasmonates in Maize.
Borrego EJ, Kolomiets MV., Plants (Basel) 5(4), 2016
PMID: 27916835
The metabolomics of oxidative stress.
Noctor G, Lelarge-Trouverie C, Mhamdi A., Phytochemistry 112(), 2015
PMID: 25306398
Protein Methionine Sulfoxide Dynamics in Arabidopsis thaliana under Oxidative Stress.
Jacques S, Ghesquière B, De Bock PJ, Demol H, Wahni K, Willems P, Messens J, Van Breusegem F, Gevaert K., Mol Cell Proteomics 14(5), 2015
PMID: 25693801
Oxidative post-translational modifications of cysteine residues in plant signal transduction.
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F., J Exp Bot 66(10), 2015
PMID: 25750423
Rice cyclophilin OsCYP18-2 is translocated to the nucleus by an interaction with SKIP and enhances drought tolerance in rice and Arabidopsis.
Lee SS, Park HJ, Yoon DH, Kim BG, Ahn JC, Luan S, Cho HS., Plant Cell Environ 38(10), 2015
PMID: 25847193
Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling.
Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, Nian J, Feng J, Xia B, Qian Q, Li J, Zuo J., Nat Commun 6(), 2015
PMID: 26096057
Maize death acids, 9-lipoxygenase-derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators.
Christensen SA, Huffaker A, Kaplan F, Sims J, Ziemann S, Doehlemann G, Ji L, Schmitz RJ, Kolomiets MV, Alborn HT, Mori N, Jander G, Ni X, Sartor RC, Byers S, Abdo Z, Schmelz EA., Proc Natl Acad Sci U S A 112(36), 2015
PMID: 26305953
OsCYP21-4, a novel Golgi-resident cyclophilin, increases oxidative stress tolerance in rice.
Lee SS, Park HJ, Jung WY, Lee A, Yoon DH, You YN, Kim HS, Kim BG, Ahn JC, Cho HS., Front Plant Sci 6(), 2015
PMID: 26483814
A genetic framework for H2O2 induced cell death in Arabidopsis thaliana.
Kaurilind E, Kaurilind E, Xu E, Brosché M., BMC Genomics 16(), 2015
PMID: 26493993
Arabidopsis mutants affecting oxylipin signaling in photo-oxidative stress responses.
Satoh M, Tokaji Y, Nagano AJ, Hara-Nishimura I, Hayashi M, Nishimura M, Ohta H, Masuda S., Plant Physiol Biochem 81(), 2014
PMID: 24342708
The significance of cysteine synthesis for acclimation to high light conditions.
Speiser A, Haberland S, Watanabe M, Wirtz M, Dietz KJ, Saito K, Hell R., Front Plant Sci 5(), 2014
PMID: 25653656
Influence of plastids on light signalling and development.
Larkin RM., Philos Trans R Soc Lond B Biol Sci 369(1640), 2014
PMID: 24591718
Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana.
Alsharafa K, Vogel MO, Oelze ML, Moore M, Stingl N, König K, Friedman H, Mueller MJ, Dietz KJ., Philos Trans R Soc Lond B Biol Sci 369(1640), 2014
PMID: 24591725
Identification of oxidatively modified proteins in salt-stressed Arabidopsis: a carbonyl-targeted proteomics approach.
Mano J, Nagata M, Okamura S, Shiraya T, Mitsui T., Plant Cell Physiol 55(7), 2014
PMID: 24850833
Molecular interaction of jasmonate and phytochrome A signalling.
Hsieh HL, Okamoto H., J Exp Bot 65(11), 2014
PMID: 24868039
Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato.
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A., Plant Physiol 166(1), 2014
PMID: 25073705
Fatty acids and early detection of pathogens.
Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K., Curr Opin Plant Biol 16(4), 2013
PMID: 23845737

46 References

Daten bereitgestellt von Europe PubMed Central.

Acosta IF, Farmer EE., 2010
Hormonal modulation of plant immunity.
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC., Annu. Rev. Cell Dev. Biol. 28(), 2012
PMID: 22559264
JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling.
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J., Nature 448(7154), 2007
PMID: 17637677
The JAZ family of repressors is the missing link in jasmonate signalling.
Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R., Nature 448(7154), 2007
PMID: 17637675
12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis.
Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H., Plant Physiol. 139(3), 2005
PMID: 16258017
Reactive electrophile species.
Farmer EE, Davoine C., Curr. Opin. Plant Biol. 10(4), 2007
PMID: 17646124
Plant defense in the absence of jasmonic acid: the role of cyclopentenones.
Stintzi A, Weber H, Reymond P, Browse J, Farmer EE., Proc. Natl. Acad. Sci. U.S.A. 98(22), 2001
PMID: 11592974
Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant.
Chehab EW, Kim S, Savchenko T, Kliebenstein D, Dehesh K, Braam J., Plant Physiol. 156(2), 2011
PMID: 21487047
Plant oxylipins: Plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties
Bӧttcher C, Pollmann S., 2009
General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S., Plant Cell 20(3), 2008
PMID: 18334669
TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins.
Stotz HU, Mueller S, Zoeller M, Mueller MJ, Berger S., J. Exp. Bot. 64(4), 2013
PMID: 23349138
Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis.
Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM., Plant Cell 16(9), 2004
PMID: 15308753
Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.
Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G., Plant Physiol. 153(3), 2010
PMID: 20488891
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH., 2011
Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.
Takahashi H, Kopriva S, Giordano M, Saito K, Hell R., Annu Rev Plant Biol 62(), 2011
PMID: 21370978
Structure-activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves
Miersch O, Kramell R, Parthier B, Wasternack C., 1999
The cyclophilins.
Wang P, Heitman J., Genome Biol. 6(7), 2005
PMID: 15998457
The Arabidopsis cyclophilin gene family.
Romano PG, Horton P, Gray JE., Plant Physiol. 134(4), 2004
PMID: 15051864
A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts.
Dominguez-Solis JR, He Z, Lima A, Ting J, Buchanan BB, Luan S., Proc. Natl. Acad. Sci. U.S.A. 105(42), 2008
PMID: 18845687
The Arabidopsis Thaliana-Pseudomonas Syringae Interaction
Katagiri F, Thilmony R, He SY., 2002
Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory.
Chung HS, Koo AJ, Gao X, Jayanty S, Thines B, Jones AD, Howe GA., Plant Physiol. 146(3), 2008
PMID: 18223147
The wound response in tomato--role of jasmonic acid.
Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O., J. Plant Physiol. 163(3), 2005
PMID: 16368162
JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis.
Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munne-Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S., Plant Cell 24(2), 2012
PMID: 22345491
Plastid signalling to the nucleus and beyond.
Pogson BJ, Woo NS, Forster B, Small ID., Trends Plant Sci. 13(11), 2008
PMID: 18838332
Interorganellar communication.
Pesaresi P, Schneider A, Kleine T, Leister D., Curr. Opin. Plant Biol. 10(6), 2007
PMID: 17719262
Impaired induction of the jasmonate pathway in the rice mutant hebiba.
Riemann M, Muller A, Korte A, Furuya M, Weiler EW, Nick P., Plant Physiol. 133(4), 2003
PMID: 14605232
Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes.
Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K., Cell 149(7), 2012
PMID: 22726439
SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription.
Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C., Plant J. 50(1), 2007
PMID: 17397508
Xenobiotic- and jasmonic acid-inducible signal transduction pathways have become interdependent at the Arabidopsis CYP81D11 promoter.
Koster J, Thurow C, Kruse K, Meier A, Iven T, Feussner I, Gatz C., Plant Physiol. 159(1), 2012
PMID: 22452854
Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana.
Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA., New Phytol. 182(1), 2009
PMID: 19140948
Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis.
Ortiz-Masia D, Perez-Amador MA, Carbonell J, Marcote MJ., FEBS Lett. 581(9), 2007
PMID: 17433310
The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens.
Veronese P, Nakagami H, Bluhm B, Abuqamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T., Plant Cell 18(1), 2005
PMID: 16339855
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Thioredoxins and glutaredoxins: unifying elements in redox biology.
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428
Biochemical analysis of transgenic tobacco lines producing bacterial serine acetyltransferase
Blaszczyk A, Sirko L, Hawkesford MJ, Sirko A., 2002


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 23671085
PubMed | Europe PMC

Suchen in

Google Scholar