ART-based fusion of multi-modal perception for robots

Berghöfer E, Schulze D, Rauch C, Tscherepanow M, Köhler T, Wachsmuth S (2013)
Neurocomputing 107: 11-22.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Berghöfer, Elmar; Schulze, DenisUniBi; Rauch, Christian; Tscherepanow, MarkoUniBi; Köhler, Tim; Wachsmuth, SvenUniBi
Abstract / Bemerkung
Robotic application scenarios in uncontrolled environments pose high demands on mobile robots. This is especially true if human–robot interaction or robot–robot interaction is involved. Here, potential interaction partners need to be identified. To tackle challenges like this, robots make use of different sensory systems. In many cases, these robots have to deal with erroneous data from different sensory systems which often are processed separately. A possible strategy to improve identification results is to combine different processing results of complementary sensors. Their relation is often hard coded and difficult to learn incrementally if new kinds of objects or events occur. In this paper, we present a new fusion strategy which we call the Simplified Fusion ARTMAP (SiFuAM) which is very flexible and therefore can be easily adapted to new domains or sensor configurations. As our approach is based on the Adaptive Resonance Theory (ART) it is inherently capable of incremental on-line learning. We show its applicability in different robotic scenarios and platforms and give an overview of its performance.
Stichworte
ART; Robotic systems; Incremental learning; Adaptive Resonance Theory; Sensor data fusion; ARTMAP
Erscheinungsjahr
2013
Zeitschriftentitel
Neurocomputing
Band
107
Seite(n)
11-22
ISSN
0925-2312
Page URI
https://pub.uni-bielefeld.de/record/2579773

Zitieren

Berghöfer E, Schulze D, Rauch C, Tscherepanow M, Köhler T, Wachsmuth S. ART-based fusion of multi-modal perception for robots. Neurocomputing. 2013;107:11-22.
Berghöfer, E., Schulze, D., Rauch, C., Tscherepanow, M., Köhler, T., & Wachsmuth, S. (2013). ART-based fusion of multi-modal perception for robots. Neurocomputing, 107, 11-22. doi:10.1016/j.neucom.2012.08.035
Berghöfer, Elmar, Schulze, Denis, Rauch, Christian, Tscherepanow, Marko, Köhler, Tim, and Wachsmuth, Sven. 2013. “ART-based fusion of multi-modal perception for robots”. Neurocomputing 107: 11-22.
Berghöfer, E., Schulze, D., Rauch, C., Tscherepanow, M., Köhler, T., and Wachsmuth, S. (2013). ART-based fusion of multi-modal perception for robots. Neurocomputing 107, 11-22.
Berghöfer, E., et al., 2013. ART-based fusion of multi-modal perception for robots. Neurocomputing, 107, p 11-22.
E. Berghöfer, et al., “ART-based fusion of multi-modal perception for robots”, Neurocomputing, vol. 107, 2013, pp. 11-22.
Berghöfer, E., Schulze, D., Rauch, C., Tscherepanow, M., Köhler, T., Wachsmuth, S.: ART-based fusion of multi-modal perception for robots. Neurocomputing. 107, 11-22 (2013).
Berghöfer, Elmar, Schulze, Denis, Rauch, Christian, Tscherepanow, Marko, Köhler, Tim, and Wachsmuth, Sven. “ART-based fusion of multi-modal perception for robots”. Neurocomputing 107 (2013): 11-22.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar