The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo

Muthuramalingam M, Matros A, Scheibe R, Mock H-P, Dietz K-J (2013)
Frontiers in Plant Science 4: 54-1-54-14.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Muthuramalingam, MeenakumariUniBi; Matros, Andrea; Scheibe, Renate; Mock, Hans-Peter; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
Hydrogen peroxide (H2O2) evolves during cellular metabolism and accumulates under various stresses causing serious redox imbalances. Many proteomics studies aiming to identify proteins sensitive to H2O2 used concentrations that were above the physiological range. Here the chloroplast proteins were subjected to partial oxidation by exogenous addition of H2O2 equivalent to 10% of available protein thiols which allowed for the identification of the primary targets of oxidation. The chosen redox proteomic approach employed differential labeling of non-oxidized and oxidized thiols using sequential alkylation with N-ethylmaleimide and biotin maleimide. The in vitro identified proteins are involved in carbohydrate metabolism, photosynthesis, redox homeostasis, and nitrogen assimilation. By using methyl viologen that induces oxidative stress in vivo, mostly the same primary targets of oxidation were identified and several oxidation sites were annotated. Ribulose-1,5-bisphosphate (RubisCO) was a primary oxidation target. Due to its high abundance, RubisCO is suggested to act as a chloroplast redox buffer to maintain a suitable redox state, even in the presence of increased reactive oxygen species release. 2-cysteine peroxiredoxins (2-Cys Prx) undergo redox-dependent modifications and play important roles in antioxidant defense and signaling. The identification of 2-Cys Prx was expected based on its high affinity to H2O2 and is considered as a proof of concept for the approach. Targets of Trx, such as phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, transketolase, and sedoheptulose-1,7-bisphosphatase have at least one regulatory disulfide bridge which supports the conclusion that the identified proteins undergo reversible thiol oxidation. In conclusion, the presented approach enabled the identification of early targets of H2O2 oxidation within the cellular proteome under physiological experimental conditions.
Erscheinungsjahr
2013
Zeitschriftentitel
Frontiers in Plant Science
Band
4
Seite(n)
54-1-54-14
ISSN
1664-462X
eISSN
1664-462X
Page URI
https://pub.uni-bielefeld.de/record/2566060

Zitieren

Muthuramalingam M, Matros A, Scheibe R, Mock H-P, Dietz K-J. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Frontiers in Plant Science. 2013;4:54-1-54-14.
Muthuramalingam, M., Matros, A., Scheibe, R., Mock, H. - P., & Dietz, K. - J. (2013). The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Frontiers in Plant Science, 4, 54-1-54-14. doi:10.3389/fpls.2013.00054
Muthuramalingam, Meenakumari, Matros, Andrea, Scheibe, Renate, Mock, Hans-Peter, and Dietz, Karl-Josef. 2013. “The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo”. Frontiers in Plant Science 4: 54-1-54-14.
Muthuramalingam, M., Matros, A., Scheibe, R., Mock, H. - P., and Dietz, K. - J. (2013). The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Frontiers in Plant Science 4, 54-1-54-14.
Muthuramalingam, M., et al., 2013. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Frontiers in Plant Science, 4, p 54-1-54-14.
M. Muthuramalingam, et al., “The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo”, Frontiers in Plant Science, vol. 4, 2013, pp. 54-1-54-14.
Muthuramalingam, M., Matros, A., Scheibe, R., Mock, H.-P., Dietz, K.-J.: The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Frontiers in Plant Science. 4, 54-1-54-14 (2013).
Muthuramalingam, Meenakumari, Matros, Andrea, Scheibe, Renate, Mock, Hans-Peter, and Dietz, Karl-Josef. “The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo”. Frontiers in Plant Science 4 (2013): 54-1-54-14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:12Z
MD5 Prüfsumme
5c5458d2778731ba45a4b3de4b64c56e


35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Protein Promiscuity in H2O2 Signaling.
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J., Antioxid Redox Signal 30(10), 2019
PMID: 29635930
Peroxiredoxins and Redox Signaling in Plants.
Liebthal M, Maynard D, Dietz KJ., Antioxid Redox Signal 28(7), 2018
PMID: 28594234
Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells.
Joseph SK, Young MP, Alzayady K, Yule DI, Ali M, Booth DM, Hajnóczky G., J Biol Chem 293(45), 2018
PMID: 30228182
Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks.
Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B., Int J Mol Sci 19(9), 2018
PMID: 30231521
Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation.
Dreyer A, Dietz KJ., Antioxidants (Basel) 7(11), 2018
PMID: 30469375
The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations.
Keech O, Gardeström P, Kleczkowski LA, Rouhier N., Plant Cell Environ 40(4), 2017
PMID: 26791824
Identification of dimedone-trapped sulfenylated proteins in plants under stress.
Akter S, Carpentier S, Van Breusegem F, Messens J., Biochem Biophys Rep 9(), 2017
PMID: 29114583
Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): Implications for energy metabolism and antibiotic-uptake ability.
Gomes MP, Gonçalves CA, de Brito JCM, Souza AM, da Silva Cruz FV, Bicalho EM, Figueredo CC, Garcia QS., J Hazard Mater 328(), 2017
PMID: 28110148
Hydrogen Peroxide Response in Leaves of Poplar (Populus simonii × Populus nigra) Revealed from Physiological and Proteomic Analyses.
Yu J, Jin X, Sun X, Gao T, Chen X, She Y, Jiang T, Chen S, Dai S., Int J Mol Sci 18(10), 2017
PMID: 28974034
Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond.
Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ., Annu Rev Plant Biol 67(), 2016
PMID: 26735063
Tuning Cysteine Reactivity and Sulfenic Acid Stability by Protein Microenvironment in Glyceraldehyde-3-Phosphate Dehydrogenases of Arabidopsis thaliana.
Zaffagnini M, Fermani S, Calvaresi M, Orrù R, Iommarini L, Sparla F, Falini G, Bottoni A, Trost P., Antioxid Redox Signal 24(9), 2016
PMID: 26650776
Protein Phosphorylation and Redox Modification in Stomatal Guard Cells.
Balmant KM, Zhang T, Chen S., Front Physiol 7(), 2016
PMID: 26903877
Direct determination of the redox status of cysteine residues in proteins in vivo.
Hara S, Tatenaka Y, Ohuchi Y, Hisabori T., Biochem Biophys Res Commun 456(1), 2015
PMID: 25436431
DYn-2 Based Identification of Arabidopsis Sulfenomes.
Akter S, Huang J, Bodra N, De Smet B, Wahni K, Rombaut D, Pauwels J, Gevaert K, Carroll K, Van Breusegem F, Messens J., Mol Cell Proteomics 14(5), 2015
PMID: 25693797
Cysteines under ROS attack in plants: a proteomics view.
Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J., J Exp Bot 66(10), 2015
PMID: 25750420
Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants.
Szalonek M, Sierpien B, Rymaszewski W, Gieczewska K, Garstka M, Lichocka M, Sass L, Paul K, Vass I, Vankova R, Dobrev P, Szczesny P, Marczewski W, Krusiewicz D, Strzelczyk-Zyta D, Hennig J, Konopka-Postupolska D., PLoS One 10(7), 2015
PMID: 26172952
Redox proteomics of tomato in response to Pseudomonas syringae infection.
Balmant KM, Parker J, Yoo MJ, Zhu N, Dufresne C, Chen S., Hortic Res 2(), 2015
PMID: 26504582
CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.
Marri L, Thieulin-Pardo G, Lebrun R, Puppo R, Zaffagnini M, Trost P, Gontero B, Sparla F., Biochimie 97(), 2014
PMID: 24211189
Insight into protein S-nitrosylation in Chlamydomonas reinhardtii.
Morisse S, Zaffagnini M, Gao XH, Lemaire SD, Marchand CH., Antioxid Redox Signal 21(9), 2014
PMID: 24328795
Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa.
Nicolia A, Ferradini N, Molla G, Biagetti E, Pollegioni L, Veronesi F, Rosellini D., J Biotechnol 184(), 2014
PMID: 24905148
Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants.
Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, Eppel A, Fluhr R, Sagi M., Plant Physiol 165(4), 2014
PMID: 24987017
Redox control of plant growth and development.
Kocsy G, Tari I, Vanková R, Zechmann B, Gulyás Z, Poór P, Galiba G., Plant Sci 211(), 2013
PMID: 23987814
Redox control of plant growth and development
Kocsy G, Bernd Zechmann, Gábor Galiba, Irma Tari, Péter Poór, Radomíra Vanková, Zsolt Gulyás., Plant Sci 211(), 2013
PMID: IND500688870
Redox regulation of the Calvin-Benson cycle: something old, something new.
Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD., Front Plant Sci 4(), 2013
PMID: 24324475

63 References

Daten bereitgestellt von Europe PubMed Central.

Botany. State transitions--a question of balance.
Allen JF., Science 299(5612), 2003
PMID: 12624254
Proteomics gives insight into the regulatory function of chloroplast thioredoxins.
Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB., Proc. Natl. Acad. Sci. U.S.A. 100(1), 2002
PMID: 12509500
Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach.
Barba-Espin G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernandez JA., Plant Cell Environ. 34(11), 2011
PMID: 21711356
Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism.
Bartsch S, Monnet J, Selbach K, Quigley F, Gray J, von Wettstein D, Reinbothe S, Reinbothe C., Proc. Natl. Acad. Sci. U.S.A. 105(12), 2008
PMID: 18349143
Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant.
Bhattachrjee S.., 2005
Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.
Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP., J. Biol. Chem. 282(2), 2006
PMID: 17105724
Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels.
Blum H., Beier H., Gross H.., 1987
Thiol-based redox switches in eukaryotic proteins.
Brandes N., Schmitt S., Jakob U.., 2009
Role of light in the regulation of chloroplast enzymes.
Buchanan B.., 1980
Redox regulation: a broadening horizon.
Buchanan BB, Balmer Y., Annu Rev Plant Biol 56(), 2005
PMID: 15862094
Redox signal integration: from stimulus to networks and genes.
Dietz KJ., Physiol Plant 133(3), 2008
PMID: 18429942
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Forced evolution of a herbicide detoxifying glutathione transferase.
Dixon DP, McEwen AG, Lapthorn AJ, Edwards R., J. Biol. Chem. 278(26), 2003
PMID: 12692133
Location of the redox-active cysteines in chloroplast sedoheptulose-1,7-bisphosphatase indicates that its allosteric regulation is similar but not identical to that of fructose-1,6-bisphosphatase.
Dunford R., Durrant M., Catley M., Dyer T.., 1998
Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants.
Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y., Plant Cell Rep. 26(9), 2007
PMID: 17458549
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria.
Foyer C., Noctor G.., 2003
Avidin.
Green NM., Adv. Protein Chem. 29(), 1975
PMID: 237414
Free Radicals in Biology and Medicine, 2nd Edn.
Halliwell B, Gutteridge J.., 1989
“Systematic analysis of superoxide-dependent signaling in plant cells: usefulness and specificity of methyl viologen application,” in
Jacob S., Dietz K.., 2009
“Redox regulation in plants: glutathione and “redoxin” related families,” in
Jacquot J., Dietz K., Rouhier N., Meux E., Lallement P., Selles B.., 2013
The biotin switch method for the detection of S-nitrosylated proteins.
Jaffrey S., Snyder S.., 2001
Reaction mechanism of plant 2-Cys peroxiredoxin.
König J., Lotte K., Plessow R., Brockhinke A., Baier M., Dietz K.., 2003
Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets.
Konig J, Muthuramalingam M, Dietz KJ., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22226570
Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase and redox-related functions.
Laxa M., König J., Dietz K., Kandlbinder A.., 2007
Protein thiol modifications visualized in vivo.
Leichert LI, Jakob U., PLoS Biol. 2(11), 2004
PMID: 15502869
A light-dependent redox-signal participates in the regulation of ammonia fixation in chloroplast of higher plants – ferredoxin:glutamate synthase is a thioredoxin-dependent enzyme.
Lichter A, Häberlein I.., 1998
Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis.
Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Lowenhielm HB, Holmgren A, Cotgreave IA., Arch. Biochem. Biophys. 406(2), 2002
PMID: 12361711
Molecular and functional characterization of sulfiredoxin homologs from higher plants.
Liu XP, Liu XY, Zhang J, Xia ZL, Liu X, Qin HJ, Wang DW., Cell Res. 16(3), 2006
PMID: 16541127
New targets of Arabidopsis thioredoxins revealed by proteomic analysis.
Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P., Proteomics 4(9), 2004
PMID: 15352244
Thioredoxin and germinating barley: targets and protein redox changes.
Marx C, Wong JH, Buchanan BB., Planta 216(3), 2002
PMID: 12520337
Thioredoxins in Arabidopsis and other plants.
Meyer Y, Reichheld JP, Vignols F., Photosyn. Res. 86(3), 2005
PMID: 16307307
NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants.
Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ., Proc. Natl. Acad. Sci. U.S.A. 100(1), 2002
PMID: 12506203
Redox modulation of Rubisco conformation and activity through its cysteine residues.
Moreno J, Garcia-Murria MJ, Marin-Navarro J., J. Exp. Bot. 59(7), 2008
PMID: 18212026
Comprehensive survey of proteins targeted by chloroplast thioredoxin.
Motohashi K, Kondoh A, Stumpp MT, Hisabori T., Proc. Natl. Acad. Sci. U.S.A. 98(20), 2001
PMID: 11553771
Thiol-disulfide redox proteomics in plant research.
Muthuramalingam M, Dietz KJ, Stroher E., Methods Mol. Biol. 639(), 2010
PMID: 20387049
Hydrogen peroxide and nitric oxide as signalling molecules in plants.
Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT., J. Exp. Bot. 53(372), 2002
PMID: 11997372
Cloning, sequencing, crystallization and X ray structure of glutathione S-transferase-III from Zea mays var.
Neuefeind T., Huber R., Reinemer P., Knäblein J., Prade L., Mann K.., 1997
The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts.
Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ., Mol. Cell Proteomics 5(1), 2005
PMID: 16207701
Chloroplast redox signals: how photosynthesis controls its own genes.
Pfannschmidt T., Trends Plant Sci. 8(1), 2003
PMID: 12523998
Plastid signalling to the nucleus and beyond.
Pogson BJ, Woo NS, Forster B, Small ID., Trends Plant Sci. 13(11), 2008
PMID: 18838332
Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling.
Polle A.., 2001
Identification of plant glutaredoxin targets.
Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G., Antioxid. Redox Signal. 7(7-8), 2005
PMID: 15998247
Co-existence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts.
Scheibe R, Wedel N, Vetter S, Emmerlich V, Sauermann SM., Eur. J. Biochem. 269(22), 2002
PMID: 12423361
Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures.
Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA., J. Proteome Res. 3(6), 2004
PMID: 15595732
Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants.
Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D., J. Proteome Res. 9(11), 2010
PMID: 20825250
Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey.
Zaffagnini M., Bedhomme M., Groni H., Marchand C., Puppo C., Gontero B.., 2012
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23516120
PubMed | Europe PMC

Suchen in

Google Scholar