Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein

Riedel T, Gómez-Consarnau L, Tomasch J, Martin M, Jarek M, González JM, Spring S, Rohlfs M, Brinkhoff T, Cypionka H, Göker M, et al. (2013)
PLOS ONE 8(3): e57487.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Riedel, Thomas; Gómez-Consarnau, Laura; Tomasch, Jürgen; Martin, Madeleine; Jarek, Michael; González, José M; Spring, Stefan; Rohlfs, Meike; Brinkhoff, Thorsten; Cypionka, Heribert; Göker, Markus; Fiebig, Anne
Alle
Abstract / Bemerkung
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.
Erscheinungsjahr
2013
Zeitschriftentitel
PLOS ONE
Band
8
Ausgabe
3
Art.-Nr.
e57487
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2564601

Zitieren

Riedel T, Gómez-Consarnau L, Tomasch J, et al. Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein. PLOS ONE. 2013;8(3): e57487.
Riedel, T., Gómez-Consarnau, L., Tomasch, J., Martin, M., Jarek, M., González, J. M., Spring, S., et al. (2013). Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein. PLOS ONE, 8(3), e57487. doi:10.1371/journal.pone.0057487
Riedel, Thomas, Gómez-Consarnau, Laura, Tomasch, Jürgen, Martin, Madeleine, Jarek, Michael, González, José M, Spring, Stefan, et al. 2013. “Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein”. PLOS ONE 8 (3): e57487.
Riedel, T., Gómez-Consarnau, L., Tomasch, J., Martin, M., Jarek, M., González, J. M., Spring, S., Rohlfs, M., Brinkhoff, T., Cypionka, H., et al. (2013). Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein. PLOS ONE 8:e57487.
Riedel, T., et al., 2013. Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein. PLOS ONE, 8(3): e57487.
T. Riedel, et al., “Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein”, PLOS ONE, vol. 8, 2013, : e57487.
Riedel, T., Gómez-Consarnau, L., Tomasch, J., Martin, M., Jarek, M., González, J.M., Spring, S., Rohlfs, M., Brinkhoff, T., Cypionka, H., Göker, M., Fiebig, A., Klein, J., Goesmann, A., Fuhrman, J.A., Wagner-Döbler, I.: Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein. PLOS ONE. 8, : e57487 (2013).
Riedel, Thomas, Gómez-Consarnau, Laura, Tomasch, Jürgen, Martin, Madeleine, Jarek, Michael, González, José M, Spring, Stefan, Rohlfs, Meike, Brinkhoff, Thorsten, Cypionka, Heribert, Göker, Markus, Fiebig, Anne, Klein, Johannes, Goesmann, Alexander, Fuhrman, Jed A, and Wagner-Döbler, Irene. “Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein”. PLOS ONE 8.3 (2013): e57487.

28 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Influence of Light on Particulate Organic Matter Utilization by Attached and Free-Living Marine Bacteria.
Gómez-Consarnau L, Needham DM, Weber PK, Fuhrman JA, Mayali X., Front Microbiol 10(), 2019
PMID: 31214143
Draft Genome Sequence of Flavobacterium succinicans Strain DD5b.
Poehlein A, Najdenski H, Simeonova DD., Genome Announc 5(2), 2017
PMID: 28082509
Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter.
Freese HM, Sikorski J, Bunk B, Scheuner C, Meier-Kolthoff JP, Spröer C, Gram L, Overmann J., Genome Biol Evol 9(12), 2017
PMID: 29194520
Proteorhodopsin light-enhanced growth linked to vitamin-B1 acquisition in marine Flavobacteria.
Gómez-Consarnau L, González JM, Riedel T, Jaenicke S, Wagner-Döbler I, Sañudo-Wilhelmy SA, Fuhrman JA., ISME J 10(5), 2016
PMID: 26574687
Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria.
Kwon YM, Kim SY, Jung KH, Kim SJ., Microbiologyopen 5(2), 2016
PMID: 26663527
Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters.
Brindefalk B, Ekman M, Ininbergs K, Dupont CL, Yooseph S, Pinhassi J, Bergman B., Environ Microbiol 18(12), 2016
PMID: 27306515
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.
Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C., Microbiol Mol Biol Rev 80(4), 2016
PMID: 27630250
Geographic Impact on Genomic Divergence as Revealed by Comparison of Nine Citromicrobial Genomes.
Zheng Q, Liu Y, Jeanthon C, Zhang R, Lin W, Yao J, Jiao N., Appl Environ Microbiol 82(24), 2016
PMID: 27736788
Retinal-binding proteins mirror prokaryotic dynamics in multipond solar salterns.
Gomariz M, Martínez-García M, Santos F, Constantino M, Meseguer I, Antón J., Environ Microbiol 17(2), 2015
PMID: 25387432
Winter diversity and expression of proteorhodopsin genes in a polar ocean.
Nguyen D, Maranger R, Balagué V, Coll-Lladó M, Lovejoy C, Pedrós-Alió C., ISME J 9(8), 2015
PMID: 25700336
Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements.
Soora M, Tomasch J, Wang H, Michael V, Petersen J, Engelen B, Wagner-Döbler I, Cypionka H., Front Microbiol 6(), 2015
PMID: 25859246
Proteorhodopsin from Dokdonia sp. PRO95 is a light-driven Na+-pump.
Bertsova YV, Bogachev AV, Skulachev VP., Biochemistry (Mosc) 80(4), 2015
PMID: 25869362
Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin.
da Silva GF, Goblirsch BR, Tsai AL, Spudich JL., Biochemistry 54(25), 2015
PMID: 26037033
Light-driven increase in carbon yield is linked to maintenance in the proteorhodopsin-containing Photobacterium angustum S14.
Courties A, Riedel T, Rapaport A, Lebaron P, Suzuki MT., Front Microbiol 6(), 2015
PMID: 26217320
Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae).
Hovde BT, Deodato CR, Hunsperger HM, Ryken SA, Yost W, Jha RK, Patterson J, Monnat RJ, Barlow SB, Starkenburg SR, Cattolico RA., PLoS Genet 11(9), 2015
PMID: 26397803
Eubacterial rhodopsins - unique photosensors and diverse ion pumps.
Brown LS., Biochim Biophys Acta 1837(5), 2014
PMID: 23748216
Proteorhodopsin.
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C., Biochim Biophys Acta 1837(5), 2014
PMID: 24060527
Draft Genome Sequence of the Gammaproteobacterial Strain MOLA455, a Representative of a Ubiquitous Proteorhodopsin-Producing Group in the Ocean.
Courties A, Riedel T, Jarek M, Papadatou M, Intertaglia L, Lebaron P, Suzuki MT., Genome Announc 2(1), 2014
PMID: 24482511
Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria.
Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, DeLong EF, Kogure K., Proc Natl Acad Sci U S A 111(18), 2014
PMID: 24706784
Nature's toolkit for microbial rhodopsin ion pumps.
Béjà O, Lanyi JK., Proc Natl Acad Sci U S A 111(18), 2014
PMID: 24737891
Complete Genome Sequence of Winogradskyella sp. Strain PG-2, a Proteorhodopsin-Containing Marine Flavobacterium.
Kumagai Y, Yoshizawa S, Oshima K, Hattori M, Iwasaki W, Kogure K., Genome Announc 2(3), 2014
PMID: 24874677
Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.
Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, Mutschler J, Dwulit-Smith J, Chan LK, Martinez-Garcia M, Sczyrba A, Stepanauskas R, Grossart HP, Woyke T, Warnecke F, Malmstrom R, Bertilsson S, McMahon KD., ISME J 8(12), 2014
PMID: 25093637
Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria.
Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F., Sci Rep 3(), 2013
PMID: 23959135
The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides.
Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, Huettel B, Stüber K, Reinhardt R, Harder J, Glöckner FO, Amann RI, Teeling H., Appl Environ Microbiol 79(21), 2013
PMID: 23995932

82 References

Daten bereitgestellt von Europe PubMed Central.

Retinylidene proteins: structures and functions from archaea to humans.
Spudich JL, Yang CS, Jung KH, Spudich EN., Annu. Rev. Cell Dev. Biol. 16(), 2000
PMID: 11031241
Rhodopsin-like protein from the purple membrane of Halobacterium halobium.
Oesterhelt D, Stoeckenius W., Nature New Biol. 233(39), 1971
PMID: 4940442
Functions of a new photoreceptor membrane.
Oesterhelt D, Stoeckenius W., Proc. Natl. Acad. Sci. U.S.A. 70(10), 1973
PMID: 4517939
Bacterial rhodopsin: evidence for a new type of phototrophy in the sea.
Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF., Science 289(5486), 2000
PMID: 10988064
Proteorhodopsin phototrophy in the ocean.
Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF., Nature 411(6839), 2001
PMID: 11459054
Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna.
Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, Lanyi JK., Science 309(5743), 2005
PMID: 16179480
Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin.
Balashov SP, Imasheva ES, Wang JM, Lanyi JK., Biophys. J. 95(5), 2008
PMID: 18515390
Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group.
Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, Lanyi JK., Biochemistry 49(45), 2010
PMID: 20942439
Photoheterotrophic microbes in the Arctic Ocean in summer and winter.
Cottrell MT, Kirchman DL., Appl. Environ. Microbiol. 75(15), 2009
PMID: 19502441
Proteorhodopsin genes are distributed among divergent marine bacterial taxa.
de la Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, Heidelberg J, DeLong EF., Proc. Natl. Acad. Sci. U.S.A. 100(22), 2003
PMID: 14566056
Proteorhodopsin-bearing bacteria in Antarctic sea ice.
Koh EY, Atamna-Ismaeel N, Martin A, Cowie RO, Beja O, Davy SK, Maas EW, Ryan KG., Appl. Environ. Microbiol. 76(17), 2010
PMID: 20601510
The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific.
Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC., PLoS Biol. 5(3), 2007
PMID: 17355176
Novel Proteorhodopsin variants from the Mediterranean and Red Seas.
Sabehi G, Massana R, Bielawski JP, Rosenberg M, Delong EF, Beja O., Environ. Microbiol. 5(10), 2003
PMID: 14510837
Different SAR86 subgroups harbour divergent proteorhodopsins.
Sabehi G, Beja O, Suzuki MT, Preston CM, DeLong EF., Environ. Microbiol. 6(9), 2004
PMID: 15305915
New insights into metabolic properties of marine bacteria encoding proteorhodopsins.
Sabehi G, Loy A, Jung KH, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Beja O., PLoS Biol. 3(8), 2005
PMID: 16008504
Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas.
Sabehi G, Kirkup BC, Rozenberg M, Stambler N, Polz MF, Beja O., ISME J 1(1), 2007
PMID: 18043613
Environmental genome shotgun sequencing of the Sargasso Sea.
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO., Science 304(5667), 2004
PMID: 15001713
Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems.
Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel KP, Labrenz M, Jurgens K, Barkay T, Stomp M, Huisman J, Beja O., ISME J 2(6), 2008
PMID: 18369329
High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton.
Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME, Stepanauskas R., ISME J 6(1), 2011
PMID: 21716306
Assembling the marine metagenome, one cell at a time.
Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji S, Cheng JF, Eisen JA, Sieracki ME, Stepanauskas R., PLoS ONE 4(4), 2009
PMID: 19390573
Light-powering Escherichia coli with proteorhodopsin.
Walter JM, Greenfield D, Bustamante C, Liphardt J., Proc. Natl. Acad. Sci. U.S.A. 104(7), 2007
PMID: 17277079
Light stimulates growth of proteorhodopsin-containing marine Flavobacteria.
Gomez-Consarnau L, Gonzalez JM, Coll-Llado M, Gourdon P, Pascher T, Neutze R, Pedros-Alio C, Pinhassi J., Nature 445(7124), 2007
PMID: 17215843
Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea.
Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, Wichels A, Brinkhoff T, Cypionka H, Wagner-Dobler I., Appl. Environ. Microbiol. 76(10), 2010
PMID: 20305030
Proteorhodopsin in the ubiquitous marine bacterium SAR11.
Giovannoni SJ, Bibbs L, Cho JC, Stapels MD, Desiderio R, Vergin KL, Rappe MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF., Nature 438(7064), 2005
PMID: 16267553
Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria).
Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, Coll-Llado M, Del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C., Proc. Natl. Acad. Sci. U.S.A. 105(25), 2008
PMID: 18552178
Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation.
Gomez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, Gonzalez JM, Pinhassi J., PLoS Biol. 8(4), 2010
PMID: 20436956
Function and regulation of Vibrio campbellii proteorhodopsin: acquired phototrophy in a classical organoheterotroph.
Wang Z, O'Shaughnessy TJ, Soto CM, Rahbar AM, Robertson KL, Lebedev N, Vora GJ., PLoS ONE 7(6), 2012
PMID: 22741028
Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration.
Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ., PLoS ONE 6(5), 2011
PMID: 21573025
Complete genome sequences of Krokinobacter sp. strain 4H-3-7-5 and Lacinutrix sp. strain 5H-3-7-4, polysaccharide-degrading members of the family Flavobacteriaceae.
Klippel B, Lochner A, Bruce DC, Davenport KW, Detter C, Goodwin LA, Han J, Han S, Hauser L, Land ML, Nolan M, Ovchinnikova G, Pennacchio L, Pitluck S, Tapia R, Woyke T, Wiebusch S, Basner A, Abe F, Horikoshi K, Keller M, Antranikian G., J. Bacteriol. 193(17), 2011
PMID: 21725025

AUTHOR UNKNOWN, 0
Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
Zerbino DR, Birney E., Genome Res. 18(5), 2008
PMID: 18349386
The Staden package, 1998.
Staden R, Beal KF, Bonfield JK., Methods Mol. Biol. 132(), 2000
PMID: 10547834
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
A benchmark of parametric methods for horizontal transfers detection.
Becq J, Churlaud C, Deschavanne P., PLoS ONE 5(4), 2010
PMID: 20376325
Towards a genome-based taxonomy for prokaryotes.
Konstantinidis KT, Tiedje JM., J. Bacteriol. 187(18), 2005
PMID: 16159757
MEGAN analysis of metagenomic data.
Huson DH, Auch AF, Qi J, Schuster SC., Genome Res. 17(3), 2007
PMID: 17255551
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
Kumar S, Nei M, Dudley J, Tamura K., Brief. Bioinformatics 9(4), 2008
PMID: 18417537
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Diversity and functional analysis of proteorhodopsin in marine Flavobacteria.
Yoshizawa S, Kawanabe A, Ito H, Kandori H, Kogure K., Environ. Microbiol. 14(5), 2012
PMID: 22329552
Respiration-driven proton translocation in rat liver mitochondria.
Mitchell P, Moyle J., Biochem. J. 105(3), 1967
PMID: 16742541
Generation of a proton gradient in Desulfovibrio vulgaris
AUTHOR UNKNOWN, 1991
Influence of light and anoxia on chemiosmotic energy conservation in Dinoroseobacter shibae.
Holert J, Hahnke S, Cypionka H., Environ Microbiol Rep 3(1), 2011
PMID: 21461053
Genomics of the proteorhodopsin-containing marine flavobacterium Dokdonia sp. strain MED134.
Gonzalez JM, Pinhassi J, Fernandez-Gomez B, Coll-Llado M, Gonzalez-Velazquez M, Puigbo P, Jaenicke S, Gomez-Consarnau L, Fernandez-Guerra A, Goesmann A, Pedros-Alio C., Appl. Environ. Microbiol. 77(24), 2011
PMID: 22003006
Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean.
Gomez-Pereira PR, Schuler M, Fuchs BM, Bennke C, Teeling H, Waldmann J, Richter M, Barbe V, Bataille E, Glockner FO, Amann R., Environ. Microbiol. 14(1), 2011
PMID: 21895912
Diversification and spectral tuning in marine proteorhodopsins.
Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, Spudich EN, Spudich JL, Beja O., EMBO J. 22(8), 2003
PMID: 12682005
Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in Lake Fryxell, Antarctica.
Van Trappen S, Vandecandelaere I, Mergaert J, Swings J., Int. J. Syst. Evol. Microbiol. 54(Pt 2), 2004
PMID: 15023957
Genome sequence of the Antarctic rhodopsins-containing flavobacterium Gillisia limnaea type strain (R-8282(T)).
Riedel T, Held B, Nolan M, Lucas S, Lapidus A, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Rohde M, Tindall BJ, Detter JC, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Woyke T., Stand Genomic Sci 7(1), 2012
PMID: 23450183
Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov.
Albuquerque L, Simoes C, Nobre MF, Pino NM, Battista JR, Silva MT, Rainey FA, da Costa MS., FEMS Microbiol. Lett. 247(2), 2005
PMID: 15927420
Complete genome sequence of Truepera radiovictrix type strain (RQ-24).
Ivanova N, Rohde C, Munk C, Nolan M, Lucas S, Del Rio TG, Tice H, Deshpande S, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla E, Rohde M, Goker M, Tindall BJ, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A., Stand Genomic Sci 4(1), 2011
PMID: 21475591
Genome sequence of Citromicrobium strain JLT1363, isolated from the South China Sea.
Zheng Q, Zhang R, Jiao N., J. Bacteriol. 193(8), 2011
PMID: 21317332
Color-changing mutation in the E-F loop of proteorhodopsin.
Yoshitsugu M, Yamada J, Kandori H., Biochemistry 48(20), 2009
PMID: 19334675
Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK., Proc. Natl. Acad. Sci. U.S.A. 105(43), 2008
PMID: 18922772
Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids.
Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S., DNA Res. 10(4), 2003
PMID: 14621292
Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna.
Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK., Biochemistry 48(46), 2009
PMID: 19842712
Carotenoids in photosynthesis.
Frank HA, Cogdell RJ., Photochem. Photobiol. 63(3), 1996
PMID: 8881328
Genetics of eubacterial carotenoid biosynthesis: a colorful tale.
Armstrong GA., Annu. Rev. Microbiol. 51(), 1997
PMID: 9343362
A photoactive carotenoid protein acting as light intensity sensor.
Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul JM, Kerfeld CA, van Grondelle R, Robert B, Kennis JT, Kirilovsky D., Proc. Natl. Acad. Sci. U.S.A. 105(33), 2008
PMID: 18687902
The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea.
Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F., Proc. Natl. Acad. Sci. U.S.A. 102(50), 2005
PMID: 16330755
Xanthorhodopsin: Proton pump with a carotenoid antenna.
Balashov SP, Lanyi JK., Cell. Mol. Life Sci. 64(18), 2007
PMID: 17571211
Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.
Shanker U, Bhushan B, Bhattacharjee G, Kamaluddin ., Orig Life Evol Biosph 42(1), 2012
PMID: 22373603
Antimicrobial and biofilm inhibiting diketopiperazines.
de Carvalho MP, Abraham WR., Curr. Med. Chem. 19(21), 2012
PMID: 22709011
Control of cell density and pattern by intercellular signaling in Myxococcus development.
Kim SK, Kaiser D, Kuspa A., Annu. Rev. Microbiol. 46(), 1992
PMID: 1444251
Respiration-driven proton translocation in Micrococcus denitrificans.
Scholes P, Mitchell P., J Bioenerg 1(3), 1971
PMID: 5135306
A Study on electron transport-driven proton translocation in Desulfovibrio desulfuricans
AUTHOR UNKNOWN, 1989
A novel six-rhodopsin system in a single archaeon.
Fu HY, Lin YC, Chang YN, Tseng H, Huang CC, Liu KC, Huang CS, Su CW, Weng RR, Lee YY, Ng WV, Yang CS., J. Bacteriol. 192(22), 2010
PMID: 20802037
Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea.
Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV., Genome Res. 14(11), 2004
PMID: 15520287
A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties.
Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma M., J. Biol. Chem. 286(8), 2010
PMID: 21135094
Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea.
Frigaard NU, Martinez A, Mincer TJ, DeLong EF., Nature 439(7078), 2006
PMID: 16482157
Microbial rhodopsins: functional versatility and genetic mobility.
Sharma AK, Spudich JL, Doolittle WF., Trends Microbiol. 14(11), 2006
PMID: 17008099
Construction and validation of a GFP-based vector for promoter expression analysis in the fish pathogen Flavobacterium psychrophilum.
Gomez E, Perez-Pascual D, Fernandez L, Mendez J, Reimundo P, Navais R, Guijarro JA., Gene 497(2), 2012
PMID: 22327027
Development of a genetic system for the transfer of DNA into Flavobacterium heparinum.
Su H, Shao Z, Tkalec L, Blain F, Zimmermann J., Microbiology (Reading, Engl.) 147(Pt 3), 2001
PMID: 11238965

AUTHOR UNKNOWN, 0
Vitamins in the sea.
Giovannoni SJ., Proc. Natl. Acad. Sci. U.S.A. 109(35), 2012
PMID: 22891350
Multiple B-vitamin depletion in large areas of the coastal ocean.
Sanudo-Wilhelmy SA, Cutter LS, Durazo R, Smail EA, Gomez-Consarnau L, Webb EA, Prokopenko MG, Berelson WM, Karl DM., Proc. Natl. Acad. Sci. U.S.A. 109(35), 2012
PMID: 22826241
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23526944
PubMed | Europe PMC

Suchen in

Google Scholar