Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria

Trötschel C, Albaum S, Poetsch A (2013)
Microbial biotechnology 6(6): 708-719.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Trötschel, Christian; Albaum, StefanUniBi ; Poetsch, Ansgar
Abstract / Bemerkung
With the advent of high-resolution mass spectrometry together with sophisticated data analysis and interpretation algorithms, determination of protein synthesis and degradation rates (i.e. protein turnover) on a proteome-wide scale by employing stable isotope-labelled amino acids has become feasible. These dynamic data provide a deeper understanding of protein homeostasis and stress response mechanisms in microorganisms than well-established 'steady state' proteomics approaches. In this article, we summarize the technological challenges and solutions both on the biochemistry/mass spectrometry and bioinformatics level for turnover proteomics with a focus on chromatographic techniques. Although the number of available case studies for Corynebacterium glutamicum and related actinobacteria is still very limited, our review illustrates the potential of protein turnover studies for an improved understanding of questions in the area of biotechnology and biomedicine. Here, new insights from investigations of growth phase transition and different stress dynamics including iron, acid and heat stress for pathogenic but also for industrial actinobacteria are presented. Finally, we will comment on the advantages of integrated software solutions for biologists and briefly discuss the remaining technical challenges and upcoming possibilities for protein turnover analysis.
Microbial biotechnology
Page URI


Trötschel C, Albaum S, Poetsch A. Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria. Microbial biotechnology. 2013;6(6):708-719.
Trötschel, C., Albaum, S., & Poetsch, A. (2013). Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria. Microbial biotechnology, 6(6), 708-719. doi:10.1111/1751-7915.12035
Trötschel, Christian, Albaum, Stefan, and Poetsch, Ansgar. 2013. “Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria”. Microbial biotechnology 6 (6): 708-719.
Trötschel, C., Albaum, S., and Poetsch, A. (2013). Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria. Microbial biotechnology 6, 708-719.
Trötschel, C., Albaum, S., & Poetsch, A., 2013. Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria. Microbial biotechnology, 6(6), p 708-719.
C. Trötschel, S. Albaum, and A. Poetsch, “Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria”, Microbial biotechnology, vol. 6, 2013, pp. 708-719.
Trötschel, C., Albaum, S., Poetsch, A.: Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria. Microbial biotechnology. 6, 708-719 (2013).
Trötschel, Christian, Albaum, Stefan, and Poetsch, Ansgar. “Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria”. Microbial biotechnology 6.6 (2013): 708-719.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Individuality and slow dynamics in bacterial growth homeostasis.
Susman L, Kohram M, Vashistha H, Nechleba JT, Salman H, Brenner N., Proc Natl Acad Sci U S A 115(25), 2018
PMID: 29871953
Drivers of Bacterial Maintenance and Minimal Energy Requirements.
Kempes CP, van Bodegom PM, Wolpert D, Libby E, Amend J, Hoehler T., Front Microbiol 8(), 2017
PMID: 28197128
pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.
Limberg MH, Joachim M, Klein B, Wiechert W, Oldiges M., J Biotechnol 259(), 2017
PMID: 28837821
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Bacterial growth laws reflect the evolutionary importance of energy efficiency.
Maitra A, Dill KA., Proc Natl Acad Sci U S A 112(2), 2015
PMID: 25548180

56 References

Daten bereitgestellt von Europe PubMed Central.

Shotgun proteomics using the iTRAQ isobaric tags.
Aggarwal K, Choe LH, Lee KH., Brief Funct Genomic Proteomic 5(2), 2006
PMID: 16772272
Qupe--a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments.
Albaum SP, Neuweger H, Franzel B, Lange S, Mertens D, Trotschel C, Wolters D, Kalinowski J, Nattkemper TW, Goesmann A., Bioinformatics 25(23), 2009
PMID: 19808875
Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action
Bandow JE, Hecker M., 2007
Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).
Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA., Nature 417(6885), 2002
PMID: 12000953
Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv.
Camus JC, Pryor MJ, Medigue C, Cole ST., Microbiology (Reading, Engl.) 148(Pt 10), 2002
PMID: 12368430
Synthesis/degradation ratio mass spectrometry for measuring relative dynamic protein turnover.
Cargile BJ, Bundy JL, Grunden AM, Stephenson JL Jr., Anal. Chem. 76(1), 2004
PMID: 14697036
Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT).
Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM., Proc. Natl. Acad. Sci. U.S.A. 103(25), 2006
PMID: 16769897
Protein turnover on the scale of the proteome.
Doherty MK, Beynon RJ., Expert Rev Proteomics 3(1), 2006
PMID: 16445354
Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC.
Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ., J. Proteome Res. 8(1), 2009
PMID: 18954100
Adaptation of Corynebacterium glutamicum to salt-stress conditions.
Franzel B, Trotschel C, Ruckert C, Kalinowski J, Poetsch A, Wolters DA., Proteomics 10(3), 2010
PMID: 19950167
Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis.
Gerth U, Kock H, Kusters I, Michalik S, Switzer RL, Hecker M., J. Bacteriol. 190(1), 2007
PMID: 17981983
A data processing pipeline for mammalian proteome dynamics studies using stable isotope metabolic labeling
Guan S, Price JC, Prusiner SB, Ghaemmaghami S, Burlingame AL., 2011
Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology.
Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R., Proc. Natl. Acad. Sci. U.S.A. 97(17), 2000
PMID: 10920198
QuantiSpec--Quantitative mass spectrometry data analysis of (15)N-metabolically labeled proteins.
Haegler K, Mueller NS, Maccarrone G, Hunyadi-Gulyas E, Webhofer C, Filiou MD, Zhang Y, Turck CW., J Proteomics 71(6), 2008
PMID: 19028610
Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor.
Jayapal KP, Philp RJ, Kok YJ, Yap MG, Sherman DH, Griffin TJ, Hu WS., PLoS ONE 3(5), 2008
PMID: 18461186
Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems.
Jayapal KP, Sui S, Philp RJ, Kok YJ, Yap MG, Griffin TJ, Hu WS., J. Proteome Res. 9(5), 2010
PMID: 20184388
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms.
Kinoshita S, Udaka S, Shimono M., J. Gen. Appl. Microbiol. 50(6), 2004
PMID: 15965888
Identification and quantitation of newly synthesized proteins in Escherichia coli by enrichment of azidohomoalanine-labeled peptides with diagonal chromatography.
Kramer G, Sprenger RR, Back J, Dekker HL, Nessen MA, van Maarseveen JH, de Koning LJ, Hellingwerf KJ, de Jong L, de Koster CG., Mol. Cell Proteomics 8(7), 2009
PMID: 19321432
The relative rates of protein synthesis and degradation in a growing culture of Escherichia coli.
Larrabee KL, Phillips JO, Williams GJ, Larrabee AR., J. Biol. Chem. 255(9), 1980
PMID: 6989832
A correlation algorithm for the automated quantitative analysis of shotgun proteomics data.
MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR 3rd., Anal. Chem. 75(24), 2003
PMID: 14670053
Quantification of mRNA and protein and integration with protein turnover in a bacterium.
Maier T, Schmidt A, Guell M, Kuhner S, Gavin AC, Aebersold R, Serrano L., Mol. Syst. Biol. 7(), 2011
PMID: 21772259
Proteolysis during long-term glucose starvation in Staphylococcus aureus COL.
Michalik S, Liebeke M, Zuhlke D, Lalk M, Bernhardt J, Gerth U, Hecker M., Proteomics 9(19), 2009
PMID: 19743422
Life and death of proteins: a case study of glucose-starved Staphylococcus aureus.
Michalik S, Bernhardt J, Otto A, Moche M, Becher D, Meyer H, Lalk M, Schurmann C, Schluter R, Kock H, Gerth U, Hecker M., Mol. Cell Proteomics 11(9), 2012
PMID: 22556279
Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose.
Muffler A, Bettermann S, Haushalter M, Horlein A, Neveling U, Schramm M, Sorgenfrei O., J. Biotechnol. 98(2-3), 2002
PMID: 12141991
ProRata: A quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation.
Pan C, Kora G, McDonald WH, Tabb DL, VerBerkmoes NC, Hurst GB, Pelletier DA, Samatova NF, Hettich RL., Anal. Chem. 78(20), 2006
PMID: 17037911
Turnover of intracellular proteins.
Pine MJ., Annu. Rev. Microbiol. 26(), 1972
PMID: 4562805
Dynamics of protein turnover, a missing dimension in proteomics.
Pratt JM, Petty J, Riba-Garcia I, Robertson DH, Gaskell SJ, Oliver SG, Beynon RJ., Mol. Cell Proteomics 1(8), 2002
PMID: 12376573
Widespread changes in protein synthesis induced by microRNAs.
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N., Nature 455(7209), 2008
PMID: 18668040
Perturbation and interpretation of nitrogen isotope distribution patterns in proteomics.
Snijders AP, de Koning B, Wright PC., J. Proteome Res. 4(6), 2005
PMID: 16335965
Proposal for a new hierarchic classification system, Actinobacteria classis nov
Stackebrandt E, Rainey FA, Ward-Rainey NL., 1997
Pulse-chase analysis of protein kinase C.
Takahashi M, Ono Y., Methods Mol. Biol. 233(), 2003
PMID: 12840506
Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis.
Timmins GS, Master S, Rusnak F, Deretic V., Antimicrob. Agents Chemother. 48(8), 2004
PMID: 15273113
Protein turnover quantification in a multilabeling approach: from data calculation to evaluation.
Trotschel C, Albaum SP, Wolff D, Schroder S, Goesmann A, Nattkemper TW, Poetsch A., Mol. Cell Proteomics 11(8), 2012
PMID: 22493176
Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum.
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D., Microbiol. Mol. Biol. Rev. 71(3), 2007
PMID: 17804669
Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program.
Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK., J. Exp. Med. 198(5), 2003
PMID: 12953092
Label-free mass spectrometry-based protein quantification technologies in proteomic analysis.
Wang M, You J, Bemis KG, Tegeler TJ, Brown DP., Brief Funct Genomic Proteomic 7(5), 2008
PMID: 18579615
Large-scale analysis of the yeast proteome by multidimensional protein identification technology.
Washburn MP, Wolters D, Yates JR 3rd., Nat. Biotechnol. 19(3), 2001
PMID: 11231557
Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum.
Weinand M, Kramer R, Morbach S., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17390131
An automated multidimensional protein identification technology for shotgun proteomics.
Wolters DA, Washburn MP, Yates JR 3rd., Anal. Chem. 73(23), 2001
PMID: 11774908
Proteome scale turnover analysis in live animals using stable isotope metabolic labeling.
Zhang Y, Reckow S, Webhofer C, Boehme M, Gormanns P, Egge-Jacobsen WM, Turck CW., Anal. Chem. 83(5), 2011
PMID: 21314131

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 23425033
PubMed | Europe PMC

Suchen in

Google Scholar