The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum

Heyer A, Gaetgens C, Hentschel E, Kalinowski J, Bott M, Frunzke J (2012)
Microbiology 158(Pt_12): 3020-3031.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
We recently showed that the two-component system (TCS) HrrSA plays a central role in the control of haem homeostasis in the Gram-positive soil bacterium Corynebacterium glutamicum. Here, we characterized the function of another TCS of this organism, ChrSA, which exhibits significant sequence similarity to HrrSA, and provide evidence for cross-regulation of the two systems. In this study, ChrSA was shown to be crucial for haem resistance of C. glutamicum by activation of the putative haem-detoxifying ABC-transporter HrtBA in the presence of haem. Deletion of either hrtBA or chrSA resulted in a strongly increased sensitivity towards haem. DNA microarray analysis and gel retardation assays with the purified response regulator ChrA revealed that phosphorylated ChrA acts as an activator of hrtBA in the presence of haem. The haem oxygenase gene, hmuO, showed a decreased mRNA level in a chrSA deletion mutant but no significant binding of ChrA to the hmuO promoter was observed in vitro. In contrast, activation from P-hmuO fused to eyfp was almost abolished in an hrrSA mutant, indicating that HrrSA is the dominant system for haem-dependent activation of hmuO in C. glutamicum. Remarkably, ChrA was also shown to bind to the hrrA promoter and to repress transcription of the paralogous response regulator, whereas chrSA itself seemed to be repressed by HrrA. These data suggest a close interplay of HrrSA and ChrSA at the level of transcription and emphasize ChrSA as a second TCS involved in haem-dependent gene regulation in C. glutamicum, besides HrrSA.
Erscheinungsjahr
Zeitschriftentitel
Microbiology
Band
158
Ausgabe
Pt_12
Seite(n)
3020-3031
ISSN
eISSN
PUB-ID

Zitieren

Heyer A, Gaetgens C, Hentschel E, Kalinowski J, Bott M, Frunzke J. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Microbiology. 2012;158(Pt_12):3020-3031.
Heyer, A., Gaetgens, C., Hentschel, E., Kalinowski, J., Bott, M., & Frunzke, J. (2012). The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Microbiology, 158(Pt_12), 3020-3031. doi:10.1099/mic.0.062638-0
Heyer, A., Gaetgens, C., Hentschel, E., Kalinowski, J., Bott, M., and Frunzke, J. (2012). The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Microbiology 158, 3020-3031.
Heyer, A., et al., 2012. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Microbiology, 158(Pt_12), p 3020-3031.
A. Heyer, et al., “The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum”, Microbiology, vol. 158, 2012, pp. 3020-3031.
Heyer, A., Gaetgens, C., Hentschel, E., Kalinowski, J., Bott, M., Frunzke, J.: The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum. Microbiology. 158, 3020-3031 (2012).
Heyer, Antonia, Gaetgens, Cornelia, Hentschel, Eva, Kalinowski, Jörn, Bott, Michael, and Frunzke, Julia. “The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum”. Microbiology 158.Pt_12 (2012): 3020-3031.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Membrane Topology and Heme Binding of the Histidine Kinases HrrS and ChrS in Corynebacterium glutamicum.
Keppel M, Davoudi E, Gätgens C, Frunzke J., Front Microbiol 9(), 2018
PMID: 29479345
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.
Küberl A, Polen T, Bott M., Proc Natl Acad Sci U S A 113(17), 2016
PMID: 27078093
Silencing of cryptic prophages in Corynebacterium glutamicum.
Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J., Nucleic Acids Res 44(21), 2016
PMID: 27492287
A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.
Donovan C, Heyer A, Pfeifer E, Polen T, Wittmann A, Krämer R, Frunzke J, Bramkamp M., Nucleic Acids Res 43(10), 2015
PMID: 25916847
The crimson conundrum: heme toxicity and tolerance in GAS.
Sachla AJ, Le Breton Y, Akhter F, McIver KS, Eichenbaum Z., Front Cell Infect Microbiol 4(), 2014
PMID: 25414836
IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria.
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J., BMC Biol 11(), 2013
PMID: 24377418

51 References

Daten bereitgestellt von Europe PubMed Central.

Bacterial iron homeostasis.
Andrews SC, Robinson AK, Rodriguez-Quinones F., FEMS Microbiol. Rev. 27(2-3), 2003
PMID: 12829269
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129.
Cerdeno-Tarraga AM, Efstratiou A, Dover LG, Holden MT, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jagels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J., Nucleic Acids Res. 31(22), 2003
PMID: 14602910

AUTHOR UNKNOWN, HANDBOOK OF CORYNEBACTERIUM GLUTAMICUM (), 0
Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum.
Ehira S, Ogino H, Teramoto H, Inui M, Yukawa H., J. Biol. Chem. 284(25), 2009
PMID: 19403527
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA.
Frunzke J, Gatgens C, Brocker M, Bott M., J. Bacteriol. 193(5), 2011
PMID: 21217007
Bacterial response regulators: versatile regulatory strategies from common domains.
Gao R, Mack TR, Stock AM., Trends Biochem. Sci. 32(5), 2007
PMID: 17433693
Iron and metal regulation in bacteria.
Hantke K., Curr. Opin. Microbiol. 4(2), 2001
PMID: 11282473
Heme-dependent autophosphorylation of a heme sensor kinase, ChrS, from Corynebacterium diphtheriae reconstituted in proteoliposomes.
Ito Y, Nakagawa S, Komagata A, Ikeda-Saito M, Shiro Y, Nakamura H., FEBS Lett. 583(13), 2009
PMID: 19505463
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response.
Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M., J. Bacteriol. 188(2), 2006
PMID: 16385062
Bacterial sensor kinases: diversity in the recognition of environmental signals.
Krell T, Lacal J, Busch A, Silva-Jimenez H, Guazzaroni ME, Ramos JL., Annu. Rev. Microbiol. 64(), 2010
PMID: 20825354
Comparative analysis of hmuO function and expression in Corynebacterium species.
Kunkle CA, Schmitt MP., J. Bacteriol. 189(9), 2007
PMID: 17322319
Specificity in two-component signal transduction pathways.
Laub MT, Goulian M., Annu. Rev. Genet. 41(), 2007
PMID: 18076326
Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis.
Lechardeur D, Cesselin B, Liebl U, Vos MH, Fernandez A, Brun C, Gruss A, Gaudu P., J. Biol. Chem. 287(7), 2011
PMID: 22084241
Stimulus perception in bacterial signal-transducing histidine kinases.
Mascher T, Helmann JD, Unden G., Microbiol. Mol. Biol. Rev. 70(4), 2006
PMID: 17158704
The theft of host heme by Gram-positive pathogenic bacteria.
Nobles CL, Maresso AW., Metallomics 3(8), 2011
PMID: 21725569
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
The heme sensor system of Staphylococcus aureus.
Stauff DL, Skaar EP., Contrib Microbiol 16(), 2009
PMID: 19494582
Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response.
Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL, Kuechenmeister L, Dunman PM, Skaar EP., J. Bacteriol. 190(10), 2008
PMID: 18326576
Two-component signal transduction.
Stock AM, Robinson VL, Goudreau PN., Annu. Rev. Biochem. 69(), 2000
PMID: 10966457
The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence.
Trost E, Ott L, Schneider J, Schroder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, Soares Sde C, D'Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A., BMC Genomics 11(), 2010
PMID: 21192786
The DtxR regulon of Corynebacterium glutamicum.
Wennerhold J, Bott M., J. Bacteriol. 188(8), 2006
PMID: 16585752
Histidine kinases and response regulator proteins in two-component signaling systems.
West AH, Stock AM., Trends Biochem. Sci. 26(6), 2001
PMID: 11406410
Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R.
Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M., Microbiology (Reading, Engl.) 153(Pt 4), 2007
PMID: 17379713

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23038807
PubMed | Europe PMC

Suchen in

Google Scholar