High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum

Jungwirth B, Sala C, Kohl TA, Uplekar S, Baumbach J, Cole ST, Pühler A, Tauch A (2013)
Microbiology 159(Pt_1): 12-22.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jungwirth, BrittaUniBi; Sala, Claudia; Kohl, Thomas A; Uplekar, Swapna; Baumbach, Jan; Cole, Stewart T; Pühler, AlfredUniBi ; Tauch, AndreasUniBi
Abstract / Bemerkung
The transcriptional regulator GlxR has been characterized as a global hub within the gene-regulatory network of Corynebacterium glutamicum. Chromatin immunoprecipitation with a specific anti-GlxR antibody and subsequent high-throughput sequencing (ChIP-seq) was applied to C. glutamicum to get new in vivo insights into the gene composition of the GlxR regulon. In a comparative approach, C. glutamicum cells were grown with either glucose or acetate as the sole carbon source prior to immunoprecipitation. High-throughput sequencing resulted in 69 million reads and 2.6 Gb of genomic information. After mapping of these data on the genome sequence of C. glutamicum, 107 enriched DNA fragments were detected from cells grown with glucose as carbon source. GlxR binding sites were identified in the sequence of 79 enriched DNA fragments, of which 21 sites were not previously reported. Electrophoretic mobility shift assays with 40-mer oligomers covering the GlxR binding sites were performed for validation of the in vivo results. The detection of new binding sites confirmed the role of GlxR as a regulator of carbon source metabolism and energy conversion, but additionally revealed binding of GlxR in front of the 6C non-coding RNA gene and to non-canonical DNA binding sites within protein-coding regions. The present study underlines the dynamics within the GlxR regulon by identifying in vivo targets during growth on glucose and contributes to the expansion of knowledge of this important transcriptional regulator.
Erscheinungsjahr
2013
Zeitschriftentitel
Microbiology
Band
159
Ausgabe
Pt_1
Seite(n)
12-22
ISSN
1350-0872
eISSN
1465-2080
Page URI
https://pub.uni-bielefeld.de/record/2548270

Zitieren

Jungwirth B, Sala C, Kohl TA, et al. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology. 2013;159(Pt_1):12-22.
Jungwirth, B., Sala, C., Kohl, T. A., Uplekar, S., Baumbach, J., Cole, S. T., Pühler, A., et al. (2013). High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology, 159(Pt_1), 12-22. doi:10.1099/mic.0.062059-0
Jungwirth, Britta, Sala, Claudia, Kohl, Thomas A, Uplekar, Swapna, Baumbach, Jan, Cole, Stewart T, Pühler, Alfred, and Tauch, Andreas. 2013. “High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum”. Microbiology 159 (Pt_1): 12-22.
Jungwirth, B., Sala, C., Kohl, T. A., Uplekar, S., Baumbach, J., Cole, S. T., Pühler, A., and Tauch, A. (2013). High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology 159, 12-22.
Jungwirth, B., et al., 2013. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology, 159(Pt_1), p 12-22.
B. Jungwirth, et al., “High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum”, Microbiology, vol. 159, 2013, pp. 12-22.
Jungwirth, B., Sala, C., Kohl, T.A., Uplekar, S., Baumbach, J., Cole, S.T., Pühler, A., Tauch, A.: High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology. 159, 12-22 (2013).
Jungwirth, Britta, Sala, Claudia, Kohl, Thomas A, Uplekar, Swapna, Baumbach, Jan, Cole, Stewart T, Pühler, Alfred, and Tauch, Andreas. “High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum”. Microbiology 159.Pt_1 (2013): 12-22.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Comparative genomics of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members emphasizing tRNA and non-coding RNA.
Behra PRK, Pettersson BMF, Das S, Dasgupta S, Kirsebom LA., BMC Evol Biol 19(1), 2019
PMID: 31215393
Rv3852 (H-NS) of Mycobacterium tuberculosis Is Not Involved in Nucleoid Compaction and Virulence Regulation.
Odermatt NT, Sala C, Benjak A, Kolly GS, Vocat A, Lupien A, Cole ST., J Bacteriol 199(16), 2017
PMID: 28559300
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR., Front Microbiol 8(), 2017
PMID: 29075239
Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803.
Giner-Lamia J, Robles-Rengel R, Hernández-Prieto MA, Muro-Pastor MI, Florencio FJ, Futschik ME., Nucleic Acids Res 45(20), 2017
PMID: 29036481
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
The small 6C RNA of Corynebacterium glutamicum is involved in the SOS response.
Pahlke J, Dostálová H, Holátko J, Degner U, Bott M, Pátek M, Polen T., RNA Biol 13(9), 2016
PMID: 27362471
Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O, Rückert C, Marin K, Wendisch VF, Krämer R, Seibold GM., J Bacteriol 198(16), 2016
PMID: 27274030
Transcriptional regulation of the vanillate utilization genes (vanABK Operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor.
Morabbi Heravi K, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J., J Bacteriol 197(5), 2015
PMID: 25535273
Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria.
Knapp GS, Lyubetskaya A, Peterson MW, Gomes AL, Ma Z, Galagan JE, McDonough KA., Nucleic Acids Res 43(11), 2015
PMID: 25940627
Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB.
Sorger-Herrmann U, Taniguchi H, Wendisch VF., BMC Microbiol 15(), 2015
PMID: 26021728
CMRegNet-An interspecies reference database for corynebacterial and mycobacterial regulatory networks.
Abreu VA, Almeida S, Tiwari S, Hassan SS, Mariano D, Silva A, Baumbach J, Azevedo V, Röttger R., BMC Genomics 16(), 2015
PMID: 26062809
Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.
Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J., Metab Eng 32(), 2015
PMID: 26453945
The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.
Townsend PD, Jungwirth B, Pojer F, Bußmann M, Money VA, Cole ST, Pühler A, Tauch A, Bott M, Cann MJ, Pohl E., PLoS One 9(12), 2014
PMID: 25469635
Emerging tools for synthetic genome design.
Lee BR, Cho S, Song Y, Kim SC, Cho BK., Mol Cells 35(5), 2013
PMID: 23708771
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339

57 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, Stat Sci 7(), 1992
Ethanol catabolism in Corynebacterium glutamicum.
Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 15(4), 2007
PMID: 17693703
Structure and evolution of transcriptional regulatory networks.
Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA., Curr. Opin. Struct. Biol. 14(3), 2004
PMID: 15193307
Methods to reconstruct and compare transcriptional regulatory networks.
Babu MM, Lang B, Aravind L., Methods Mol. Biol. 541(), 2009
PMID: 19381525
Fitting a mixture model by expectation maximization to discover motifs in biopolymers.
Bailey TL, Elkan C., Proc Int Conf Intell Syst Mol Biol 2(), 1994
PMID: 7584402
Fast index based algorithms and software for matching position specific scoring matrices.
Beckstette M, Homann R, Giegerich R, Kurtz S., BMC Bioinformatics 7(), 2006
PMID: 16930469
Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein.
Blasco B, Chen JM, Hartkoorn R, Sala C, Uplekar S, Rougemont J, Pojer F, Cole ST., PLoS Pathog. 8(3), 2012
PMID: 22479184
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712

Botsford, Microbiol. Mol. Biol. Rev. 56(1), 1992
Characterization of the Fur regulon in Pseudomonas syringae pv. tomato DC3000.
Butcher BG, Bronstein PA, Myers CR, Stodghill PV, Bolton JJ, Markel EJ, Filiatrault MJ, Swingle B, Gaballa A, Helmann JD, Schneider DJ, Cartinhour SW., J. Bacteriol. 193(18), 2011
PMID: 21784947
Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032.
Cha PH, Park SY, Park SY, Moon MW, Subhadra B, Oh TK, Kim E, Kim JF, Lee JK., Appl. Microbiol. Biotechnol. 85(4), 2009
PMID: 19568747
Mapping the regulon of Vibrio cholerae ferric uptake regulator expands its known network of gene regulation.
Davies BW, Bogard RW, Mekalanos JJ., Proc. Natl. Acad. Sci. U.S.A. 108(30), 2011
PMID: 21750152
cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all!
Gomelsky M., Mol. Microbiol. 79(3), 2011
PMID: 21255104
Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome.
Grainger DC, Hurd D, Harrison M, Holdstock J, Busby SJ., Proc. Natl. Acad. Sci. U.S.A. 102(49), 2005
PMID: 16301522
Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering.
Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Honer Zu Siederdissen C, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J., J. Biotechnol. 153(1-2), 2011
PMID: 21392545
Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase.
Han SO, Inui M, Yukawa H., Microbiology (Reading, Engl.) 153(Pt 7), 2007
PMID: 17600063
EbfC (YbaB) is a new type of bacterial nucleoid-associated protein and a global regulator of gene expression in the Lyme disease spirochete.
Jutras BL, Bowman A, Brissette CA, Adams CA, Verma A, Chenail AM, Stevenson B., J. Bacteriol. 194(13), 2012
PMID: 22544270
Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli.
Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM., Nucleic Acids Res. 39(6), 2010
PMID: 21097887
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Transcriptional regulation by cAMP and its receptor protein.
Kolb A, Busby S, Buc H, Garges S, Adhya S., Annu. Rev. Biochem. 62(), 1993
PMID: 8394684
Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R.
Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H., Appl. Microbiol. Biotechnol. 76(6), 2007
PMID: 17646983
Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium.
Kramer R, Lambert C, Hoischen C, Ebbighausen H., Eur. J. Biochem. 194(3), 1990
PMID: 1980106
Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum.
Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L., J. Bacteriol. 177(5), 1995
PMID: 7868586
Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle.
Laub MT, Chen SL, Shapiro L, McAdams HH., Proc. Natl. Acad. Sci. U.S.A. 99(7), 2002
PMID: 11930012
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM., J. Bacteriol. 188(2), 2006
PMID: 16385030
A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data.
Lun DS, Sherrid A, Weiner B, Sherman DR, Galagan JE., Genome Biol. 10(12), 2009
PMID: 20028542
Genome-wide transcription factor binding: beyond direct target regulation.
MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ., Trends Genet. 27(4), 2011
PMID: 21295369
Regulation of the nitrate reductase operon narKGHJI by the cAMP-dependent regulator GlxR in Corynebacterium glutamicum.
Nishimura T, Teramoto H, Toyoda K, Inui M, Yukawa H., Microbiology (Reading, Engl.) 157(Pt 1), 2010
PMID: 20864477
The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum.
Panhorst M, Sorger-Herrmann U, Wendisch VF., J. Biotechnol. 154(2-3), 2010
PMID: 20638427
ChIP-seq: advantages and challenges of a maturing technology.
Park PJ., Nat. Rev. Genet. 10(10), 2009
PMID: 19736561
CoryneRegNet 6.0--Updated database content, new analysis methods and novel features focusing on community demands.
Pauling J, Rottger R, Tauch A, Azevedo V, Baumbach J., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22080556

AUTHOR UNKNOWN, Nat. Genet. 32(), 2002
Cyclic AMP in prokaryotes.
Rickenberg HV., Annu. Rev. Microbiol. 28(0), 1974
PMID: 4372939
Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis.
Sala C, Haouz A, Saul FA, Miras I, Rosenkrands I, Alzari PM, Cole ST., Mol. Microbiol. 71(5), 2009
PMID: 19154333
Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis.
Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO., J. Biol. Chem. 287(26), 2012
PMID: 22528497
Small non-coding RNAs in Streptomyces coelicolor.
Swiercz JP, Hindra , Bobek J, Bobek J, Haiser HJ, Di Berardo C, Tjaden B, Elliot MA., Nucleic Acids Res. 36(22), 2008
PMID: 19008244
Evaluation of algorithm performance in ChIP-seq peak detection.
Wilbanks EG, Facciotti MT., PLoS ONE 5(7), 2010
PMID: 20628599
Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum.
Zhao Z, Ding JY, Ma WH, Zhou NY, Liu SJ., Appl. Environ. Microbiol. 78(8), 2012
PMID: 22307305
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23103979
PubMed | Europe PMC

Suchen in

Google Scholar