Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays

Klenke C, Janowski SJ, Borck D, Widera D, Ebmeyer J, Kalinowski J, Leichtle A, Hofestädt R, Upile T, Kaltschmidt C, Kaltschmidt B, et al. (2012)
PLoS One 7(12): e52718.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Background: Cholesteatoma is a gradually expanding destructive epithelial lesion within the middle ear. It can cause extensive local tissue destruction in the temporal bone and can initially lead to the development of conductive hearing loss via ossicular erosion. As the disease progresses, sensorineural hearing loss, vertigo or facial palsy may occur. Cholesteatoma may promote the spread of infection through the tegmen of the middle ear and cause meningitis or intracranial infections with abscess formation. It must, therefore, be considered as a potentially life-threatening middle ear disease. Methods and Findings: In this study, we investigated differentially expressed genes in human cholesteatomas in comparison to regular auditory canal skin using Whole Human Genome Microarrays containing 19,596 human genes. In addition to already described up-regulated mRNAs in cholesteatoma, such as MMP9, DEFB2 and KRT19, we identified 3558 new cholesteatoma-related transcripts. 811 genes appear to be significantly differentially up-regulated in cholesteatoma. 334 genes were down-regulated more than 2-fold. Significantly regulated genes with protein metabolism activity include matrix metalloproteinases as well as PI3, SERPINB3 and SERPINB4. Genes like SPP1, KRT6B, PRPH, SPRR1B and LAMC2 are known as genes with cell growth and/or maintenance activity. Transport activity genes and signal transduction genes are LCN2, GJB2 and CEACAM6. Three cell communication genes were identified; one CDH19 and two from the S100 family. Conclusions: This study demonstrates that the expression profile of cholesteatoma is similar to a metastatic tumour and chronically inflamed tissue. Based on the investigated profiles we present novel protein-protein interaction and signal transduction networks, which include cholesteatoma-regulated transcripts and may be of great value for drug targeting and therapy development.
Erscheinungsjahr
2012
Zeitschriftentitel
PLoS One
Band
7
Ausgabe
12
Art.-Nr.
e52718
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2545867

Zitieren

Klenke C, Janowski SJ, Borck D, et al. Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays. PLoS One. 2012;7(12): e52718.
Klenke, C., Janowski, S. J., Borck, D., Widera, D., Ebmeyer, J., Kalinowski, J., Leichtle, A., et al. (2012). Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays. PLoS One, 7(12), e52718. https://doi.org/10.1371/journal.pone.0052718
Klenke, Christin, Janowski, Sebastian Jan, Borck, Daniela, Widera, Darius, Ebmeyer, Jörg, Kalinowski, Jörn, Leichtle, Anke, et al. 2012. “Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays”. PLoS One 7 (12): e52718.
Klenke, C., Janowski, S. J., Borck, D., Widera, D., Ebmeyer, J., Kalinowski, J., Leichtle, A., Hofestädt, R., Upile, T., Kaltschmidt, C., et al. (2012). Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays. PLoS One 7:e52718.
Klenke, C., et al., 2012. Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays. PLoS One, 7(12): e52718.
C. Klenke, et al., “Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays”, PLoS One, vol. 7, 2012, : e52718.
Klenke, C., Janowski, S.J., Borck, D., Widera, D., Ebmeyer, J., Kalinowski, J., Leichtle, A., Hofestädt, R., Upile, T., Kaltschmidt, C., Kaltschmidt, B., Sudhoff, H.: Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays. PLoS One. 7, : e52718 (2012).
Klenke, Christin, Janowski, Sebastian Jan, Borck, Daniela, Widera, Darius, Ebmeyer, Jörg, Kalinowski, Jörn, Leichtle, Anke, Hofestädt, Ralf, Upile, Tahwinder, Kaltschmidt, Christian, Kaltschmidt, Barbara, and Sudhoff, Holger. “Identification of Novel Cholesteatoma-related Gene Expression Signatures Using Full-genome Microarrays”. PLoS One 7.12 (2012): e52718.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The genetics of cholesteatoma. A systematic review using narrative synthesis.
Jennings BA, Prinsley P, Philpott C, Willis G, Bhutta MF., Clin Otolaryngol 43(1), 2018
PMID: 28485112
The Allele 2 of the VNTR Polymorphism in the Gene That Encodes a Natural Inhibitor of IL-1β, IL-1RA Is Favorably Associated With Chronic Otitis Media.
Živković M, Kolić I, Jesić S, Jotić A, Stanković A., Clin Exp Otorhinolaryngol 11(2), 2018
PMID: 29433161
Analysis of KRT1, KRT10, KRT19, TP53 and MMP9 expression in pediatric and adult cholesteatoma.
Palkó E, Póliska S, Sziklai I, Penyige A., PLoS One 13(7), 2018
PMID: 30021014
Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences.
Saber MM, Adeyemi Babarinde I, Hettiarachchi N, Saitou N., Genome Biol Evol 8(7), 2016
PMID: 27289096
Pathogenesis and Bone Resorption in Acquired Cholesteatoma: Current Knowledge and Future Prospectives.
Hamed MA, Nakata S, Sayed RH, Ueda H, Badawy BS, Nishimura Y, Kojima T, Iwata N, Ahmed AR, Dahy K, Kondo N, Suzuki K., Clin Exp Otorhinolaryngol 9(4), 2016
PMID: 27440129
Updates and knowledge gaps in cholesteatoma research.
Kuo CL, Shiao AS, Yung M, Sakagami M, Sudhoff H, Wang CH, Hsu CH, Lien CF., Biomed Res Int 2015(), 2015
PMID: 25866816
NOD-Like Receptor Signaling in Cholesteatoma.
Leichtle A, Klenke C, Ebmeyer J, Daerr M, Bruchhage KL, Hoffmann AS, Ryan AF, Wollenberg B, Sudhoff H., Biomed Res Int 2015(), 2015
PMID: 25922834
Influence of continuous negative pressure in the rat middle ear.
Akiyama N, Yamamoto-Fukuda T, Takahashi H., Laryngoscope 124(10), 2014
PMID: 24916143

50 References

Daten bereitgestellt von Europe PubMed Central.

Angiogenesis and angiogenic growth factors in middle ear cholesteatoma.
Sudhoff H, Dazert S, Gonzales AM, Borkowski G, Park SY, Baird A, Hildmann H, Ryan AF., Am J Otol 21(6), 2000
PMID: 11078065
Pathogenesis of sinus cholesteatoma.
Sudhoff H, Tos M., Eur Arch Otorhinolaryngol 264(10), 2007
PMID: 17534638
Mode of growth of acquired cholesteatoma.
Wells MD, Michaels L., J Laryngol Otol 105(4), 1991
PMID: 2026936
Epidermoid formation on the pathogenesis of congenital cholesteatoma – a current review
AUTHOR UNKNOWN, 1999
Transforming growth factor beta and wound healing in human cholesteatoma.
Huisman MA, de Heer E, Ten Dijke P, Grote JJ., Laryngoscope 118(1), 2008
PMID: 17989584
Histological and immunohistochemical study of pars tensa reaction pocket
AUTHOR UNKNOWN, 2011

AUTHOR UNKNOWN, 0
Microarray-based expression profiling in prostate tumors
AUTHOR UNKNOWN, 2000
Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.
Yoshikawa M, Kojima H, Wada K, Tsukidate T, Okada N, Saito H, Moriyama H., Arch. Otolaryngol. Head Neck Surg. 132(7), 2006
PMID: 16847181

AUTHOR UNKNOWN, 0
A comparison of background correction methods for two-colour microarrays.
Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK., Bioinformatics 23(20), 2007
PMID: 17720982
Normalization of cDNA microarray data.
Smyth GK, Speed T., Methods 31(4), 2003
PMID: 14597310

AUTHOR UNKNOWN, 0
Modeling of Cell-to-Cell Communication Processes with Petri Nets Using the Example of Quorum Sensing.
Janowski S, Kormeier B, Topel T, Hippe K, Hofestadt R, Willassen N, Friesen R, Rubert S, Borck D, Haugen P, Chen M., Stud Health Technol Inform 162(), 2011
PMID: 21685572
Human Protein Reference Database--2009 update.
Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A., Nucleic Acids Res. 37(Database issue), 2008
PMID: 18988627
The IntAct molecular interaction database in 2012.
Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22121220
MINT, the molecular interaction database: 2012 update.
Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22096227
Comparative cytokeratin distribution patterns in cholesteatoma epithelium.
Olszewska E, Sudhoff H., Histol. Histopathol. 22(1), 2007
PMID: 17128409

AUTHOR UNKNOWN, 0
Acquired cholesteatoma: light and electron microscopic observations.
Lim DJ, Saunders WH., Ann. Otol. Rhinol. Laryngol. 81(1), 1972
PMID: 5009814
Histologic description of acquired cholesteatomas: comparison between children and adults.
Dornelles C, Meurer L, Selaimen da Costa S, Schweiger C., Braz J Otorhinolaryngol 72(5), 2006
PMID: 17221056
Increased proliferation and migration of epithelium in advancing experimental cholesteatomas.
Kim HJ, Tinling SP, Chole RA., Otol. Neurotol. 23(6), 2002
PMID: 12438843
Novel function of keratins 5 and 14 in proliferation and differentiation of stratified epithelial cells.
Alam H, Sehgal L, Kundu ST, Dalal SN, Vaidya MM., Mol. Biol. Cell 22(21), 2011
PMID: 21900500
Localization of osteopontin at calcification sites of cholesteatoma: possible role as a regulator of deposition of calcium phosphate in the middle ear.
Makiishi-Shimobayashi C, Tsujimura T, Iwasaki T, Kakihana M, Shimano K, Terada N, Sakagami M., Auris Nasus Larynx 31(1), 2004
PMID: 15041047
The Membran-Anchored MMP Inhibitor RECK Is a Key Regulator of Extracellular Matrix Integrity and Angiogenesis
AUTHOR UNKNOWN, 2001
RECK expression in pancreatic cancer: its correlation with lower invasiveness and better prognosis.
Masui T, Doi R, Koshiba T, Fujimoto K, Tsuji S, Nakajima S, Koizumi M, Toyoda E, Tulachan S, Ito D, Kami K, Mori T, Wada M, Noda M, Imamura M., Clin. Cancer Res. 9(5), 2003
PMID: 12738734
Small Proline-Rich Protein 1B (SPRR1B) Is a Biomarker for Squamous Metaplasia in Dry Eye Disease
AUTHOR UNKNOWN, 2008
The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages.
Zhang J, Wu Y, Zhang Y, Leroith D, Bernlohr DA, Chen X., Mol. Endocrinol. 22(6), 2008
PMID: 18292240
Role of Bcl-xL protein in differentiation and apoptosis of human middle ear cholesteatoma epithelium
AUTHOR UNKNOWN, 1999
CEACAM6 is a determinant of pancreatic adenocarcinoma cellular invasiveness.
Duxbury MS, Ito H, Benoit E, Ashley SW, Whang EE., Br. J. Cancer 91(7), 2004
PMID: 15316565
Delineation and candidate gene mutation screening of the 18q22 minimal region of deletion in head and neck squamous cell carcinoma.
Blons H, Laccourreye O, Houllier AM, Carnot F, Brasnu D, Beaune P, Zucman-Rossi J, Laurent-Puig P., Oncogene 21(32), 2002
PMID: 12118382

AUTHOR UNKNOWN, 0
Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL.
Chen SS, Claus R, Lucas DM, Yu L, Qian J, Ruppert AS, West DA, Williams KE, Johnson AJ, Sablitzky F, Plass C, Byrd JC., Blood 117(3), 2010
PMID: 21098398
Development of anti-PAX3 immune responses; a target for cancer immunotherapy.
Himoudi N, Nabarro S, Yan M, Gilmour K, Thrasher AJ, Anderson J., Cancer Immunol. Immunother. 56(9), 2007
PMID: 17318653

AUTHOR UNKNOWN, 0
Loss of AP-2 Results in Up-regulation of MCAM/MUC18 and an Increase in Tumor Growth and Metastasis of Human Melanoma Cells
AUTHOR UNKNOWN, 1998
Overexpression of beta3/gamma2 chains of laminin-5 and MMP7 in biliary cancer.
Oka T, Yamamoto H, Sasaki S, Ii M, Hizaki K, Taniguchi H, Adachi Y, Imai K, Shinomura Y., World J. Gastroenterol. 15(31), 2009
PMID: 19701966
Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma.
Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S., Gastroenterology 129(5), 2005
PMID: 16285938
Cadherin and catenin alterations in human cancer.
Hajra KM, Fearon ER., Genes Chromosomes Cancer 34(3), 2002
PMID: 12007186
Downregulation of ID4 by promoter hypermethylation in gastric adenocarcinoma.
Chan AS, Tsui WY, Chen X, Chu KM, Chan TL, Chan AS, Li R, So S, Yuen ST, Leung SY., Oncogene 22(44), 2003
PMID: 14534543
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23285167
PubMed | Europe PMC

Suchen in

Google Scholar