Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex

Niemann H, Gherardi E, Bleymüller W, Heinz DW (2012)
Protein Science 21(10): 1528-1539.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Niemann, HartmutUniBi ; Gherardi, Ermanno; Bleymüller, WillemUniBi; Heinz, Dirk W
Abstract / Bemerkung
The physiological relevance of contacts in crystal lattices often remains elusive. This was also the case for the complex between the invasion protein internalin B (InlB) from Listeria monocytogenes and its host cell receptor, the human receptor tyrosine kinase (RTK) MET. InlB is a MET agonist and induces bacterial host cell invasion. Activation of RTKs generally involves ligand-induced dimerization of the receptor ectodomain. The two currently available crystal structures of the InlB:MET complex show the same arrangement of InlB and MET in a 1:1 complex, but different dimeric 2:2 assemblies. Only one of these 2:2 assemblies is predicted to be stable by a computational procedure. This assembly is mainly stabilized by a contact between the Cap domain of InlB from one and the Sema domain of MET from another 1:1 complex. Here, we probe the physiological relevance of this interaction. We generated variants of the leucine-rich repeat (LRR) protein InlB by inserting an additional repeat between the first and the second LRR. This should allow formation of the 1:1 complex but disrupt the potential 2:2 complex involving the Cap-Sema contact due to steric distortions. A crystal structure of one of the engineered proteins showed that it folded properly. Binding affinity to MET was comparable to that of wild-type InlB. The InlB variant induced MET phosphorylation and cell scatter like wild-type InlB. These results suggest that the Cap-Sema interaction is not physiologically relevant and support the previously proposed assembly, in which a 2:2 InlB:MET complex is built around a ligand dimer. Copyright 2012 The Protein Society.
Erscheinungsjahr
2012
Zeitschriftentitel
Protein Science
Band
21
Ausgabe
10
Seite(n)
1528-1539
ISSN
0961-8368
Page URI
https://pub.uni-bielefeld.de/record/2529531

Zitieren

Niemann H, Gherardi E, Bleymüller W, Heinz DW. Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex. Protein Science. 2012;21(10):1528-1539.
Niemann, H., Gherardi, E., Bleymüller, W., & Heinz, D. W. (2012). Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex. Protein Science, 21(10), 1528-1539. doi:10.1002/pro.2142
Niemann, Hartmut, Gherardi, Ermanno, Bleymüller, Willem, and Heinz, Dirk W. 2012. “Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex”. Protein Science 21 (10): 1528-1539.
Niemann, H., Gherardi, E., Bleymüller, W., and Heinz, D. W. (2012). Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex. Protein Science 21, 1528-1539.
Niemann, H., et al., 2012. Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex. Protein Science, 21(10), p 1528-1539.
H. Niemann, et al., “Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex”, Protein Science, vol. 21, 2012, pp. 1528-1539.
Niemann, H., Gherardi, E., Bleymüller, W., Heinz, D.W.: Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex. Protein Science. 21, 1528-1539 (2012).
Niemann, Hartmut, Gherardi, Ermanno, Bleymüller, Willem, and Heinz, Dirk W. “Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex”. Protein Science 21.10 (2012): 1528-1539.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Receptor-ligand interactions: binding affinities studied by single-molecule and super-resolution microscopy on intact cells.
Dietz MS, Fricke F, Krüger CL, Niemann HH, Heilemann M., Chemphyschem 15(4), 2014
PMID: 24772464
Crystal structure of an engineered YopM-InlB hybrid protein.
Breitsprecher D, Gherardi E, Bleymüller WM, Niemann HH., BMC Struct Biol 14(), 2014
PMID: 24669959
Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells.
Dietz MS, Haße D, Ferraris DM, Göhler A, Niemann HH, Heilemann M., BMC Biophys 6(1), 2013
PMID: 23731667
Hepatocyte growth factor signaling in intrapancreatic ductal cells drives pancreatic morphogenesis.
Anderson RM, Delous M, Bosch JA, Ye L, Robertson MA, Hesselson D, Stainier DY., PLoS Genet 9(7), 2013
PMID: 23935514

51 References

Daten bereitgestellt von Europe PubMed Central.

Structural basis for FGF receptor dimerization and activation.
Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M., Cell 98(5), 1999
PMID: 10490103
Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin.
Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL., Nature 407(6807), 2000
PMID: 11069186
Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex.
Harmer NJ, Ilag LL, Mulloy B, Pellegrini L, Robinson CV, Blundell TL., J. Mol. Biol. 339(4), 2004
PMID: 15165853
Structural basis for fibroblast growth factor receptor activation.
Mohammadi M, Olsen SK, Ibrahimi OA., Cytokine Growth Factor Rev. 16(2), 2005
PMID: 15863029
Cell signaling by receptor tyrosine kinases.
Schlessinger J., Cell 103(2), 2000
PMID: 11057895
Signal transduction by allosteric receptor oligomerization.
Schlessinger J., Trends Biochem. Sci. 13(11), 1988
PMID: 3075366
Signal transduction by receptors with tyrosine kinase activity.
Ullrich A, Schlessinger J., Cell 61(2), 1990
PMID: 2158859
Cell signaling by receptor tyrosine kinases.
Lemmon MA, Schlessinger J., Cell 141(7), 2010
PMID: 20602996
Structural insights into Met receptor activation.
Niemann HH., Eur. J. Cell Biol. 90(11), 2011
PMID: 21242015
Met, metastasis, motility and more
Birchmeier C, Birchmeier W, Gherardi E, VandeWoude GF., 2003
Invasive growth: a MET-driven genetic programme for cancer and stem cells.
Boccaccio C, Comoglio PM., Nat. Rev. Cancer 6(8), 2006
PMID: 16862193
InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase.
Shen Y, Naujokas M, Park M, Ireton K., Cell 103(3), 2000
PMID: 11081636
Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion.
Seveau S, Pizarro-Cerda J, Cossart P., Microbes Infect. 9(10), 2007
PMID: 17761447
The Listeria protein internalin B mimics hepatocyte growth factor-induced receptor trafficking.
Li N, Xiang GS, Dokainish H, Ireton K, Elferink LA., Traffic 6(6), 2005
PMID: 15882443
Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB.
Niemann HH, Jager V, Butler PJ, van den Heuvel J, Schmidt S, Ferraris D, Gherardi E, Heinz DW., Cell 130(2), 2007
PMID: 17662939
Met receptor tyrosine kinase degradation is altered in response to the leucine-rich repeat of the Listeria invasion protein internalin B.
Gao X, Lorinczi M, Hill KS, Brooks NC, Dokainish H, Ireton K, Elferink LA., J. Biol. Chem. 284(2), 2008
PMID: 18990695
Adhesins and invasins of pathogenic bacteria: a structural view.
Niemann HH, Schubert WD, Heinz DW., Microbes Infect. 6(1), 2004
PMID: 14738899
GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation.
Banerjee M, Copp J, Vuga D, Marino M, Chapman T, van der Geer P, Ghosh P., Mol. Microbiol. 52(1), 2004
PMID: 15049825
Fold and function of the InlB B-repeat.
Ebbes M, Bleymuller WM, Cernescu M, Nolker R, Brutschy B, Niemann HH., J. Biol. Chem. 286(17), 2011
PMID: 21345802
Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor.
Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C., EMBO J. 23(12), 2004
PMID: 15167892
Structural basis of hepatocyte growth factor/scatter factor and MET signalling.
Gherardi E, Sandin S, Petoukhov MV, Finch J, Youles ME, Ofverstedt LG, Miguel RN, Blundell TL, Vande Woude GF, Skoglund U, Svergun DI., Proc. Natl. Acad. Sci. U.S.A. 103(11), 2006
PMID: 16537482
Ligand-mediated dimerization of the Met receptor tyrosine kinase by the bacterial invasion protein InlB.
Ferraris DM, Gherardi E, Di Y, Heinz DW, Niemann HH., J. Mol. Biol. 395(3), 2009
PMID: 19900460
Inference of macromolecular assemblies from crystalline state.
Krissinel E, Henrick K., J. Mol. Biol. 372(3), 2007
PMID: 17681537
Crystal structure and standardized geometric analysis of InlJ, a listerial virulence factor and leucine-rich repeat protein with a novel cysteine ladder.
Bublitz M, Holland C, Sabet C, Reichelt J, Cossart P, Heinz DW, Bierne H, Schubert WD., J. Mol. Biol. 378(1), 2008
PMID: 18343406
Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain.
Schubert WD, Gobel G, Diepholz M, Darji A, Kloer D, Hain T, Chakraborty T, Wehland J, Domann E, Heinz DW., J. Mol. Biol. 312(4), 2001
PMID: 11575932
X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB.
Niemann HH, Petoukhov MV, Hartlein M, Moulin M, Gherardi E, Timmins P, Heinz DW, Svergun DI., J. Mol. Biol. 377(2), 2008
PMID: 18262542
Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes.
Machner MP, Frese S, Schubert WD, Orian-Rousseau V, Gherardi E, Wehland J, Niemann HH, Heinz DW., Mol. Microbiol. 48(6), 2003
PMID: 12791136
The leucine-rich repeat as a protein recognition motif.
Kobe B, Kajava AV., Curr. Opin. Struct. Biol. 11(6), 2001
PMID: 11751054
Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering.
Lee SC, Park K, Han J, Lee JJ, Kim HJ, Hong S, Heu W, Kim YJ, Ha JS, Lee SG, Cheong HK, Jeon YH, Kim D, Kim HS., Proc. Natl. Acad. Sci. U.S.A. 109(9), 2012
PMID: 22328160
Macromolecular complexes in crystals and solutions
Krissinel E., 2011
Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor.
Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J., Cell 130(2), 2007
PMID: 17662946
Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha.
Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, Jorissen RN, Nice EC, Burgess AW, Ward CW., Cell 110(6), 2002
PMID: 12297049
Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains.
Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S., Cell 110(6), 2002
PMID: 12297050
Structural basis for Gas6-Axl signalling.
Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Gohring W, Ullrich A, Timpl R, Hohenester E., EMBO J. 25(1), 2005
PMID: 16362042
Crystal contacts as nature's docking solutions.
Krissinel E., J Comput Chem 31(1), 2010
PMID: 19421996
A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist.
Tolbert WD, Daugherty J, Gao C, Xie Q, Miranti C, Gherardi E, Vande Woude G, Xu HE., Proc. Natl. Acad. Sci. U.S.A. 104(37), 2007
PMID: 17804794
Xds
Kabsch W., 2010
Phaser crystallographic software.
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ., J Appl Crystallogr 40(Pt 4), 2007
PMID: 19461840
Features and development of Coot
Emsley P, Lohkamp B, Scott WG, Cowtan K., 2010
PHENIX: a comprehensive Python-based system for macromolecular structure solution
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH., 2010
REFMAC5 for the refinement of macromolecular crystal structures
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA., 2011
Intensity statistics in twinned crystals with examples from the PDB
Lebedev AA, Vagin AA, Murshudov GN., 2006
TLSMD web server for the generation of multi-group TLS models
Painter J, Merritt EA., 2006
MolProbity: all-atom structure validation for macromolecular crystallography
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC., 2010
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22887347
PubMed | Europe PMC

Suchen in

Google Scholar