Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum

Busche T, Silar R, Picmanova M, Patek M, Kalinowski J (2012)
BMC Genomics 13(1): 445.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Busche, TobiasUniBi; Silar, Radoslav; Picmanova, Martina; Patek, Miroslav; Kalinowski, JörnUniBi
Abstract / Bemerkung
Background The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Results Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. Conclusions The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have overcome the stress condition. Here we propose a model of the regulation of oxidative and heat stress response including redox homeostasis by SigH, RshA and the thioredoxin system.
Anti-sigma factor; Corynebacterium glutamicum; ECF sigma factor; Promoter; Microarray analysis
BMC Genomics
Page URI


Busche T, Silar R, Picmanova M, Patek M, Kalinowski J. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics. 2012;13(1): 445.
Busche, T., Silar, R., Picmanova, M., Patek, M., & Kalinowski, J. (2012). Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics, 13(1), 445. doi:10.1186/1471-2164-13-445
Busche, T., Silar, R., Picmanova, M., Patek, M., and Kalinowski, J. (2012). Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics 13:445.
Busche, T., et al., 2012. Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics, 13(1): 445.
T. Busche, et al., “Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum”, BMC Genomics, vol. 13, 2012, : 445.
Busche, T., Silar, R., Picmanova, M., Patek, M., Kalinowski, J.: Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum. BMC Genomics. 13, : 445 (2012).
Busche, Tobias, Silar, Radoslav, Picmanova, Martina, Patek, Miroslav, and Kalinowski, Jörn. “Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA, and control of its regulatory network in Corynebacterium glutamicum”. BMC Genomics 13.1 (2012): 445.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Function of alkyl hydroperoxidase AhpD in resistance to oxidative stress in Corynebacterium glutamicum.
Su T, Si M, Zhao Y, Yao S, Che C, Liu Y, Chen C., J Gen Appl Microbiol 65(2), 2019
PMID: 30249939
Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum.
Tung QN, Loi VV, Busche T, Nerlich A, Mieth M, Milse J, Kalinowski J, Hocke AC, Antelmann H., Redox Biol 20(), 2019
PMID: 30481728
Identifying the Growth Modulon of Corynebacterium glutamicum.
Haas T, Graf M, Nieß A, Busche T, Kalinowski J, Blombach B, Takors R., Front Microbiol 10(), 2019
PMID: 31134020
Chemistry and Redox Biology of Mycothiol.
Reyes AM, Pedre B, De Armas MI, Tossounian MA, Radi R, Messens J, Trujillo M., Antioxid Redox Signal 28(6), 2018
PMID: 28372502
Differential transcriptomic analysis reveals hidden light response in Streptomyces lividans.
Koepff J, Morschett H, Busche T, Winkler A, Kalinowski J, Wiechert W, Oldiges M., Biotechnol Prog 34(1), 2018
PMID: 28960883
Overlap of Promoter Recognition Specificity of Stress Response Sigma Factors SigD and SigH in Corynebacterium glutamicum ATCC 13032.
Dostálová H, Busche T, Holátko J, Rucká L, Štěpánek V, Barvík I, Nešvera J, Kalinowski J, Pátek M., Front Microbiol 9(), 2018
PMID: 30687273
Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Streptomyces Protein Secretion.
Busche T, Tsolis KC, Koepff J, Rebets Y, Rückert C, Hamed MB, Bleidt A, Wiechert W, Lopatniuk M, Yousra A, Anné J, Karamanou S, Oldiges M, Kalinowski J, Luzhetskyy A, Economou A., Front Microbiol 9(), 2018
PMID: 29915569
Characterization of Sigma Factor Genes in Streptomyces lividans TK24 Using a Genomic Library-Based Approach for Multiple Gene Deletions.
Rebets Y, Tsolis KC, Guðmundsdóttir EE, Koepff J, Wawiernia B, Busche T, Bleidt A, Horbal L, Myronovskyi M, Ahmed Y, Wiechert W, Rückert C, Hamed MB, Bilyk B, Anné J, Friðjónsson Ó, Kalinowski J, Oldiges M, Economou A, Luzhetskyy A., Front Microbiol 9(), 2018
PMID: 30619125
Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation.
Koepff J, Keller M, Tsolis KC, Busche T, Rückert C, Hamed MB, Anné J, Kalinowski J, Wiechert W, Economou A, Oldiges M., Biotechnol Bioeng 114(9), 2017
PMID: 28436005
Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum.
Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M., AMB Express 7(1), 2017
PMID: 28651382
Physiological roles of sigma factor SigD in Corynebacterium glutamicum.
Taniguchi H, Busche T, Patschkowski T, Niehaus K, Pátek M, Kalinowski J, Wendisch VF., BMC Microbiol 17(1), 2017
PMID: 28701150
Identification of a suitable promoter for the sigma factor of Mycobacterium tuberculosis.
Mallick Gupta A, Mukherjee S, Dutta A, Mukhopadhyay J, Bhattacharyya D, Mandal S., Mol Biosyst 13(11), 2017
PMID: 28952652
Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications.
Liu X, Yang Y, Zhang W, Sun Y, Peng F, Jeffrey L, Harvey L, McNeil B, Bai Z., Crit Rev Biotechnol 36(4), 2016
PMID: 25714007
Regulons of global transcription factors in Corynebacterium glutamicum.
Toyoda K, Inui M., Appl Microbiol Biotechnol 100(1), 2016
PMID: 26496920
Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors.
Šilar R, Holátko J, Rucká L, Rapoport A, Dostálová H, Kadeřábková P, Nešvera J, Pátek M., Curr Microbiol 73(3), 2016
PMID: 27270733
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
Si M, Zhang L, Chaudhry MT, Ding W, Xu Y, Chen C, Akbar A, Shen X, Liu SJ., Appl Environ Microbiol 81(8), 2015
PMID: 25681179
Redox regulation by reversible protein S-thiolation in bacteria.
Loi VV, Rossius M, Antelmann H., Front Microbiol 6(), 2015
PMID: 25852656
Thiol-based redox switches in prokaryotes.
Hillion M, Antelmann H., Biol Chem 396(5), 2015
PMID: 25720121
Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
Chi BK, Busche T, Van Laer K, Bäsell K, Becher D, Clermont L, Seibold GM, Persicke M, Kalinowski J, Messens J, Antelmann H., Antioxid Redox Signal 20(4), 2014
PMID: 23886307
Functional characterization of Corynebacterium glutamicum mycothiol S-conjugate amidase.
Si M, Long M, Chaudhry MT, Xu Y, Zhang P, Zhang L, Shen X., PLoS One 9(12), 2014
PMID: 25514023
Corynebacterium glutamicum promoters: a practical approach.
Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339

60 References

Daten bereitgestellt von Europe PubMed Central.

The Corynebacterium glutamicum genome: features and impacts on biotechnological processes.
Ikeda M, Nakagawa S., Appl. Microbiol. Biotechnol. 62(2-3), 2003
PMID: 12743753
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R.
Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M., Microbiology (Reading, Engl.) 153(Pt 4), 2007
PMID: 17379713
Multiple sigma subunits and the partitioning of bacterial transcription space.
Gruber TM, Gross CA., Annu. Rev. Microbiol. 57(), 2003
PMID: 14527287
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase
Corynebacterium glutamicum sigmaE is involved in responses to cell surface stresses and its activity is controlled by the anti-sigma factor CseE.
Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS., Microbiology (Reading, Engl.) 154(Pt 3), 2008
PMID: 18310037
RsrA, an anti-sigma factor regulated by redox change.
Kang JG, Paget MS, Seok YJ, Hahn MY, Bae JB, Hahn JS, Kleanthous C, Buttner MJ, Roe JH., EMBO J. 18(15), 1999
PMID: 10428967
Determinants of redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol oxidative stress response.
Jung YG, Cho YB, Kim MS, Yoo JS, Hong SH, Roe JH., Nucleic Acids Res. 39(17), 2011
PMID: 21685450
Functional analysis of sigH expression in Corynebacterium glutamicum.
Kim TH, Kim HJ, Park JS, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 331(4), 2005
PMID: 15883048
Microarray studies reveal a 'differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum.
Barreiro C, Nakunst D, Huser AT, de Paz HD, Kalinowski J, Martin JF., Microbiology (Reading, Engl.) 155(Pt 2), 2009
PMID: 19202085
Redox control in actinobacteria.
den Hengst CD, Buttner MJ., Biochim. Biophys. Acta 1780(11), 2008
PMID: 18252205
The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum.
Choi WW, Park SD, Lee SM, Kim HB, Kim Y, Lee HS., FEMS Microbiol. Lett. 290(1), 2008
PMID: 19016879
The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress.
Kim TH, Park JS, Kim HJ, Kim Y, Kim P, Lee HS., Biochem. Biophys. Res. Commun. 337(3), 2005
PMID: 16212936
Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB, from Brevibacterium flavum.
Halgasova N, Bukovska G, Timko J, Kormanec J., Curr. Microbiol. 43(4), 2001
PMID: 11683358
Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation.
Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H., Appl. Environ. Microbiol. 74(16), 2008
PMID: 18567683
Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora.
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Puhler A., J. Bacteriol. 187(13), 2005
PMID: 15968079
Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays.
Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Huser AT, Hansmeier N, Puhler A, Borovok I, Tauch A., Microbiology (Reading, Engl.) 155(Pt 5), 2009
PMID: 19372162
The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis.
Raman S, Song T, Puyang X, Bardarov S, Jacobs WR Jr, Husson RN., J. Bacteriol. 183(20), 2001
PMID: 11567012
Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon.
Paget MS, Molle V, Cohen G, Aharonowitz Y, Buttner MJ., Mol. Microbiol. 42(4), 2001
PMID: 11737643
Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria.
Newton GL, Buchmeier N, Fahey RC., Microbiol. Mol. Biol. Rev. 72(3), 2008
PMID: 18772286
Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein.
Burns KE, Liu WT, Boshoff HI, Dorrestein PC, Barry CE 3rd., J. Biol. Chem. 284(5), 2008
PMID: 19028679
Chromosomally encoded small antisense RNA in Corynebacterium glutamicum.
Zemanova M, Kaderabkova P, Patek M, Knoppova M, Silar R, Nesvera J., FEMS Microbiol. Lett. 279(2), 2007
PMID: 18093135
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes.
Newton GL, Arnold K, Price MS, Sherrill C, Delcardayre SB, Aharonowitz Y, Cohen G, Davies J, Fahey RC, Davis C., J. Bacteriol. 178(7), 1996
PMID: 8606174
The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum.
Feng J, Che Y, Milse J, Yin YJ, Liu L, Ruckert C, Shen XH, Qi SW, Kalinowski J, Liu SJ., J. Biol. Chem. 281(16), 2006
PMID: 16481315
The SOS response of Escherichia coli

DNA binding properties of the LexA repressor.
Schnarr M, Oertel-Buchheit P, Kazmaier M, Granger-Schnarr M., Biochimie 73(4), 1991
PMID: 1911942

Techniques for transformation of E. coli
Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli.
Tauch A, Kirchner O, Wehmeier L, Kalinowski J, Puhler A., FEMS Microbiol. Lett. 123(3), 1994
PMID: 7988915
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744488
EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data.
Dondrup M, Albaum SP, Griebel T, Henckel K, Junemann S, Kahlke T, Kleindt CK, Kuster H, Linke B, Mertens D, Mittard-Runte V, Neuweger H, Runte KJ, Tauch A, Tille F, Puhler A, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19200358
The genes of lepA and hemN form a bicistronic operon in Bacillus subtilis.
Homuth G, Heinemann M, Zuber U, Schumann W., Microbiology (Reading, Engl.) 142 ( Pt 7)(), 1996
PMID: 8757728
Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M., J. Biotechnol. 139(3), 2008
PMID: 19121344
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 22943411
PubMed | Europe PMC

Suchen in

Google Scholar