Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis

Shaikhali J, Noren L, de Dios Barajas-Lopez J, Srivastava V, Konig J, Sauer UH, Wingsle G, Dietz K-J, Strand A (2012)
Journal of Biological Chemistry 287(33): 27510-27525.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Shaikhali, Jehad; Noren, Louise; de Dios Barajas-Lopez, Juan; Srivastava, Vaibhav; Konig, Janine; Sauer, Uwe H; Wingsle, Gunnar; Dietz, Karl-JosefUniBi; Strand, Asa
Abstract / Bemerkung
Plant genes that contain the G-box in their promoters are responsive to a variety of environmental stimuli. Bioinformatics analysis of transcriptome data revealed that the G-box element is significantly enriched in promoters of high light-responsive genes. From nuclear extracts of high light-treated Arabidopsis plants, we identified the AtbZIP16 transcription factor as a component binding to the G-box-containing promoter fragment of light-harvesting chlorophyll a/b-binding protein2.4 (LHCB2.4). AtbZIP16 belongs to the G-group of Arabidopsis basic region leucine zipper (bZIP) type transcription factors. Although AtbZIP16 and its close homologues AtbZIP68 and AtGBF1 bind the G-box, they do not bind the mutated half-sites of the G-box palindrome. In addition, AtbZIP16 interacts with AtbZIP68 and AtGBF1 in the yeast two-hybrid system. A conserved Cys residue was shown to be necessary for redox regulation and enhancement of DNA binding activity in all three proteins. Furthermore, transgenic Arabidopsis lines overexpressing the wild type version of bZIP16 and T-DNA insertion mutants for bZIP68 and GBF1 demonstrated impaired regulation of LHCB2.4 expression. Finally, overexpression lines for the mutated Cys variant of bZIP16 provided support for the biological significance of Cys(330) in redox regulation of gene expression. Thus, our results suggest that environmentally induced changes in the redox state regulate the activity of members of the G-group of bZIP transcription factors.
Erscheinungsjahr
2012
Zeitschriftentitel
Journal of Biological Chemistry
Band
287
Ausgabe
33
Seite(n)
27510-27525
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/2523548

Zitieren

Shaikhali J, Noren L, de Dios Barajas-Lopez J, et al. Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis. Journal of Biological Chemistry. 2012;287(33):27510-27525.
Shaikhali, J., Noren, L., de Dios Barajas-Lopez, J., Srivastava, V., Konig, J., Sauer, U. H., Wingsle, G., et al. (2012). Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis. Journal of Biological Chemistry, 287(33), 27510-27525. doi:10.1074/jbc.M112.361394
Shaikhali, J., Noren, L., de Dios Barajas-Lopez, J., Srivastava, V., Konig, J., Sauer, U. H., Wingsle, G., Dietz, K. - J., and Strand, A. (2012). Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis. Journal of Biological Chemistry 287, 27510-27525.
Shaikhali, J., et al., 2012. Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis. Journal of Biological Chemistry, 287(33), p 27510-27525.
J. Shaikhali, et al., “Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis”, Journal of Biological Chemistry, vol. 287, 2012, pp. 27510-27525.
Shaikhali, J., Noren, L., de Dios Barajas-Lopez, J., Srivastava, V., Konig, J., Sauer, U.H., Wingsle, G., Dietz, K.-J., Strand, A.: Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis. Journal of Biological Chemistry. 287, 27510-27525 (2012).
Shaikhali, Jehad, Noren, Louise, de Dios Barajas-Lopez, Juan, Srivastava, Vaibhav, Konig, Janine, Sauer, Uwe H, Wingsle, Gunnar, Dietz, Karl-Josef, and Strand, Asa. “Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis”. Journal of Biological Chemistry 287.33 (2012): 27510-27525.

37 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Physiological Functions of Universal Stress Proteins and Their Molecular Mechanism to Protect Plants From Environmental Stresses.
Chi YH, Koo SS, Oh HT, Lee ES, Park JH, Phan KAT, Wi SD, Bae SB, Paeng SK, Chae HB, Kang CH, Kim MG, Kim WY, Yun DJ, Lee SY., Front Plant Sci 10(), 2019
PMID: 31231414
Developmental control of hypoxia during bud burst in grapevine.
Meitha K, Agudelo-Romero P, Signorelli S, Gibbs DJ, Considine JA, Foyer CH, Considine MJ., Plant Cell Environ 41(5), 2018
PMID: 29336037
Thiol Based Redox Signaling in Plant Nucleus.
Martins L, Trujillo-Hernandez JA, Reichheld JP., Front Plant Sci 9(), 2018
PMID: 29892308
Redox-dependent control of nuclear transcription in plants.
He H, Van Breusegem F, Mhamdi A., J Exp Bot 69(14), 2018
PMID: 29659979
Molecular mechanisms governing plant responses to high temperatures.
Li B, Gao K, Ren H, Tang W., J Integr Plant Biol 60(9), 2018
PMID: 30030890
Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome.
El-Esawi M, Arthaut LD, Jourdan N, d'Harlingue A, Link J, Martino CF, Ahmad M., Sci Rep 7(1), 2017
PMID: 29066723
Nuclear thiol redox systems in plants.
Delorme-Hinoux V, Bangash SA, Meyer AJ, Reichheld JP., Plant Sci 243(), 2016
PMID: 26795153
Chloroplast Retrograde Regulation of Heat Stress Responses in Plants.
Sun AZ, Guo FQ., Front Plant Sci 7(), 2016
PMID: 27066042
ROS-Mediated Inhibition of S-nitrosoglutathione Reductase Contributes to the Activation of Anti-oxidative Mechanisms.
Kovacs I, Holzmeister C, Wirtz M, Geerlof A, Fröhlich T, Römling G, Kuruthukulangarakoola GT, Linster E, Hell R, Arnold GJ, Durner J, Lindermayr C., Front Plant Sci 7(), 2016
PMID: 27891135
Reductive potential - a savior turns stressor in protein aggregation cardiomyopathy.
Narasimhan M, Rajasekaran NS., Biochim Biophys Acta 1852(1), 2015
PMID: 25446995
Role of redox homeostasis in thermo-tolerance under a climate change scenario.
de Pinto MC, Locato V, Paradiso A, De Gara L., Ann Bot 116(4), 2015
PMID: 26034009
KEAP1-NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity.
Dodson M, Redmann M, Rajasekaran NS, Darley-Usmar V, Zhang J., Biochem J 469(3), 2015
PMID: 26205490
The Elucidation of the Interactome of 16 Arabidopsis bZIP Factors Reveals Three Independent Functional Networks.
Llorca CM, Berendzen KW, Malik WA, Mahn S, Piepho HP, Zentgraf U., PLoS One 10(10), 2015
PMID: 26452049
The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance.
Sun Y, Xu W, Jia Y, Wang M, Xia G., Plant J 84(6), 2015
PMID: 26588879
Molecular evolution of the HD-ZIP I gene family in legume genomes.
Li Z, Jiang H, Zhou L, Deng L, Lin Y, Peng X, Yan H, Cheng B., Gene 533(1), 2014
PMID: 24095777
Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.
Welchen E, García L, Mansilla N, Gonzalez DH., Front Plant Sci 4(), 2014
PMID: 24409193
The AtCathB3 gene, encoding a cathepsin B-like protease, is expressed during germination of Arabidopsis thaliana and transcriptionally repressed by the basic leucine zipper protein GBF1.
Iglesias-Fernández R, Wozny D, Iriondo-de Hond M, Oñate-Sánchez L, Carbonero P, Barrero-Sicilia C., J Exp Bot 65(8), 2014
PMID: 24600022
Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks.
Gläßer C, Haberer G, Finkemeier I, Pfannschmidt T, Kleine T, Leister D, Dietz KJ, Häusler RE, Grimm B, Mayer KF., Mol Plant 7(7), 2014
PMID: 24719466
Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.
Hisatomi O, Nakatani Y, Takeuchi K, Takahashi F, Kataoka H., J Biol Chem 289(25), 2014
PMID: 24790107
Sulfenome mining in Arabidopsis thaliana.
Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, De Smet B, Vertommen D, Gevaert K, De Jaeger G, Van Montagu M, Messens J, Van Breusegem F., Proc Natl Acad Sci U S A 111(31), 2014
PMID: 25049418
Mitochondrial energy and redox signaling in plants.
Schwarzländer M, Finkemeier I., Antioxid Redox Signal 18(16), 2013
PMID: 23234467
Redox modulation of plant developmental regulators from the class I TCP transcription factor family.
Viola IL, Güttlein LN, Gonzalez DH., Plant Physiol 162(3), 2013
PMID: 23686421
ROS signaling loops - production, perception, regulation.
Wrzaczek M, Brosché M, Kangasjärvi J., Curr Opin Plant Biol 16(5), 2013
PMID: 23876676
Redox-dependent functional switching of plant proteins accompanying with their structural changes.
Chi YH, Paeng SK, Kim MJ, Hwang GY, Melencion SM, Oh HT, Lee SY., Front Plant Sci 4(), 2013
PMID: 23898340

53 References

Daten bereitgestellt von Europe PubMed Central.

Light signal transduction in higher plants.
Chen M, Chory J, Fankhauser C., Annu. Rev. Genet. 38(), 2004
PMID: 15568973
PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches.
Niyogi KK., Annu. Rev. Plant Physiol. Plant Mol. Biol. 50(), 1999
PMID: 15012213
Protection against oxygen radicals: an important defence mechanism studied in transgenic plants
Foyer C., Descourvieres P., Kunert K.., 1994
Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis.
Brautigam K, Dietzel L, Kleine T, Stroher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dormann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T., Plant Cell 21(9), 2009
PMID: 19737978
The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus.
Kindgren P, Kremnev D, Blanco NE, de Dios Barajas Lopez J, Fernandez AP, Tellgren-Roth C, Kleine T, Small I, Strand A., Plant J. 70(2), 2011
PMID: 22211401
Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress.
Piippo M, Allahverdiyeva Y, Paakkarinen V, Suoranta UM, Battchikova N, Aro EM., Physiol. Genomics 25(1), 2006
PMID: 16403842
Global changes in gene expression in response to high light in Arabidopsis.
Rossel JB, Wilson IW, Pogson BJ., Plant Physiol. 130(3), 2002
PMID: 12427978
Retrograde signaling and plant stress: plastid signals initiate cellular stress responses.
Fernandez AP, Strand A., Curr. Opin. Plant Biol. 11(5), 2008
PMID: 18639482
Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1.
Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E., J. Biol. Chem. 279(46), 2004
PMID: 15347654
Two cysteines in plant R2R3 MYB domains participate in REDOX-dependent DNA binding.
Heine GF, Hernandez JM, Grotewold E., J. Biol. Chem. 279(36), 2004
PMID: 15237103
Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation.
Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H., Biochem. Biophys. Res. Commun. 361(4), 2007
PMID: 17686455
Redox regulation of plant homeodomain transcription factors.
Tron AE, Bertoncini CW, Chan RL, Gonzalez DH., J. Biol. Chem. 277(38), 2002
PMID: 12093803
Post-translational protein modification as a tool for transcription reprogramming.
Spoel SH, Tada Y, Loake GJ., New Phytol. 186(2), 2009
PMID: 20015068
Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins.
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X., Science 321(5891), 2008
PMID: 18635760
The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes.
Shaikhali J, Heiber I, Seidel T, Stroher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M., BMC Plant Biol. 8(), 2008
PMID: 18439303
Alternative splicing studies of the reactive oxygen species gene network in Populus reveal two isoforms of high-isoelectric-point superoxide dismutase.
Srivastava V, Srivastava MK, Chibani K, Nilsson R, Rouhier N, Melzer M, Wingsle G., Plant Physiol. 149(4), 2009
PMID: 19176719
Sequence, heterologous expression and functional characterization of a novel tryparedoxin from Crithidia fasciculata.
Montemartini M, Kalisz HM, Kiess M, Nogoceke E, Singh M, Steinert P, Flohe L., Biol. Chem. 379(8-9), 1998
PMID: 9792447
Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts.
Zhai Z, Sooksa-nguan T, Vatamaniuk OK., Plant Physiol. 149(2), 2008
PMID: 19005083
Oxidation-reduction properties of chloroplast thioredoxins, ferredoxin:thioredoxin reductase, and thioredoxin f-regulated enzymes.
Hirasawa M, Schurmann P, Jacquot JP, Manieri W, Jacquot P, Keryer E, Hartman FC, Knaff DB., Biochemistry 38(16), 1999
PMID: 10213627
The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
Arnold K, Bordoli L, Kopp J, Schwede T., Bioinformatics 22(2), 2005
PMID: 16301204
LOMETS: a local meta-threading-server for protein structure prediction.
Wu S, Zhang Y., Nucleic Acids Res. 35(10), 2007
PMID: 17478507
The Protein Data Bank.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE., Nucleic Acids Res. 28(1), 2000
PMID: 10592235
Interplay between Heat Shock Protein 90 and HY5 controls PhANG expression in response to the GUN5 plastid signal.
Kindgren P, Noren L, Lopez Jde D, Shaikhali J, Strand A., Mol Plant 5(4), 2011
PMID: 22201048
Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance.
Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand A., Plant Physiol. 144(3), 2007
PMID: 17478635
The CRYPTOCHROME1-dependent response to excess light is mediated through the transcriptional activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and 2 in Arabidopsis thaliana
Shaikhali J., Barajas-Lopéz J., Ötvös K., Sánchez A., Srivastava V., Wingsle G., Bako L., Strand Å.., 2012
bZIP transcription factors in Arabidopsis.
Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F; bZIP Research Group., Trends Plant Sci. 7(3), 2002
PMID: 11906833
DNA binding site preferences and transcriptional activation properties of the Arabidopsis transcription factor GBF1.
Schindler U, Terzaghi W, Beckmann H, Kadesch T, Cashmore AR., EMBO J. 11(4), 1992
PMID: 1563344
Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins.
Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR., EMBO J. 11(4), 1992
PMID: 1373374
Certain bZIP peptides bind DNA sequentially as monomers and dimerize on the DNA.
Metallo SJ, Schepartz A., Nat. Struct. Biol. 4(2), 1997
PMID: 9033590
Diffusion-controlled DNA recognition by an unfolded, monomeric bZIP transcription factor.
Berger C, Piubelli L, Haditsch U, Bosshard HR., FEBS Lett. 425(1), 1998
PMID: 9540998
DNA specificity enhanced by sequential binding of protein monomers.
Kohler JJ, Metallo SJ, Schneider TL, Schepartz A., Proc. Natl. Acad. Sci. U.S.A. 96(21), 1999
PMID: 10518519
Amino acid neighbours and detailed conformational analysis of cysteines in proteins.
Petersen MT, Jonson PH, Petersen SB., Protein Eng. 12(7), 1999
PMID: 10436079
Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs.
Deppmann CD, Acharya A, Rishi V, Wobbes B, Smeekens S, Taparowsky EJ, Vinson C., Nucleic Acids Res. 32(11), 2004
PMID: 15226410
Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque2 regulatory protein.
Vincentz M, Bandeira-Kobarg C, Gauer L, Schlogl P, Leite A., J. Mol. Evol. 56(1), 2003
PMID: 12569427
Plant bZIP proteins gather at ACGT elements.
Foster R, Izawa T, Chua NH., FASEB J. 8(2), 1994
PMID: 8119490
Reduction/oxidation-phosphorylation control of DNA binding in the bZIP dimerization network.
Amoutzias GD, Bornberg-Bauer E, Oliver SG, Robertson DL., BMC Genomics 7(), 2006
PMID: 16674813
A nuclear glutathione cycle within the cell cycle.
Diaz Vivancos P, Wolff T, Markovic J, Pallardo FV, Foyer CH., Biochem. J. 431(2), 2010
PMID: 20874710
Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains.
Gentz R, Rauscher FJ 3rd, Abate C, Curran T., Science 243(4899), 1989
PMID: 2494702
Monomeric and dimeric bZIP transcription factor GCN4 bind at the same rate to their target DNA site.
Cranz S, Berger C, Baici A, Jelesarov I, Bosshard HR., Biochemistry 43(3), 2004
PMID: 14730976
Transcriptional coactivator complexes.
Naar AM, Lemon BD, Tjian R., Annu. Rev. Biochem. 70(), 2001
PMID: 11395415

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22718771
PubMed | Europe PMC

Suchen in

Google Scholar