Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum

Chen X, Kohl TA, Rückert C, Rodionov DA, Li L-H, Ding J-Y, Kalinowski J, Liu S-J (2012)
Applied and environmental microbiology 78(16): 5796-5804.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chen, Xi; Kohl, Thomas A; Rückert, ChristianUniBi ; Rodionov, Dmitry A; Li, Ling-Hao; Ding, Jiu-Yuan; Kalinowski, JörnUniBi; Liu, Shuang-Jiang
Abstract / Bemerkung
The industrially important organism Corynebacterium glutamicum has been characterized in recent years for its robust ability to assimilate aromatic compounds. In this study, C. glutamicum strain AS 1.542 was investigated for its ability to catabolize phenylacetic acid (PAA). The paa genes were identified; they are organized as a continuous paa gene cluster. The type strain of C. glutamicum, ATCC 13032, is not able to catabolize PAA, but the recombinant strain ATCC 13032/pEC-K18mob2::paa gained the ability to grow on PAA. The paaR gene, encoding a TetR family transcription regulator, was studied in detail. Disruption of paaR in strain AS 1.542 resulted in transcriptional increases of all paa genes. Transcription start sites and putative promoter regions were determined. An imperfect palindromic motif (5'-ACTNACCGNNCGNNCGGTNAGT-3'; 22 bp) was identified in the upstream regions of paa genes. Electrophoretic mobility shift assays (EMSA) demonstrated specific binding of PaaR to this motif, and phenylacetyl coenzyme A (PA-CoA) blocked binding. It was concluded that PaaR is the negative regulator of PAA degradation and that PA-CoA is the PaaR effector. In addition, GlxR binding sites were found, and binding to GlxR was confirmed. Therefore, PAA catabolism in C. glutamicum is regulated by the pathway-specific repressor PaaR, and also likely by the global transcription regulator GlxR. By comparative genomic analysis, we reconstructed orthologous PaaR regulons in 57 species, including species of Actinobacteria, Proteobacteria, and Flavobacteria, that carry PAA utilization genes and operate by conserved binding motifs, suggesting that PaaR-like regulation might commonly exist in these bacteria.
Erscheinungsjahr
2012
Zeitschriftentitel
Applied and environmental microbiology
Band
78
Ausgabe
16
Seite(n)
5796-5804
ISSN
0099-2240
Page URI
https://pub.uni-bielefeld.de/record/2520163

Zitieren

Chen X, Kohl TA, Rückert C, et al. Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum. Applied and environmental microbiology. 2012;78(16):5796-5804.
Chen, X., Kohl, T. A., Rückert, C., Rodionov, D. A., Li, L. - H., Ding, J. - Y., Kalinowski, J., et al. (2012). Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum. Applied and environmental microbiology, 78(16), 5796-5804. doi:10.1128/AEM.01588-12
Chen, Xi, Kohl, Thomas A, Rückert, Christian, Rodionov, Dmitry A, Li, Ling-Hao, Ding, Jiu-Yuan, Kalinowski, Jörn, and Liu, Shuang-Jiang. 2012. “Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum”. Applied and environmental microbiology 78 (16): 5796-5804.
Chen, X., Kohl, T. A., Rückert, C., Rodionov, D. A., Li, L. - H., Ding, J. - Y., Kalinowski, J., and Liu, S. - J. (2012). Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum. Applied and environmental microbiology 78, 5796-5804.
Chen, X., et al., 2012. Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum. Applied and environmental microbiology, 78(16), p 5796-5804.
X. Chen, et al., “Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum”, Applied and environmental microbiology, vol. 78, 2012, pp. 5796-5804.
Chen, X., Kohl, T.A., Rückert, C., Rodionov, D.A., Li, L.-H., Ding, J.-Y., Kalinowski, J., Liu, S.-J.: Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum. Applied and environmental microbiology. 78, 5796-5804 (2012).
Chen, Xi, Kohl, Thomas A, Rückert, Christian, Rodionov, Dmitry A, Li, Ling-Hao, Ding, Jiu-Yuan, Kalinowski, Jörn, and Liu, Shuang-Jiang. “Phenylacetic Acid Catabolism and Its Transcriptional Regulation in Corynebacterium glutamicum”. Applied and environmental microbiology 78.16 (2012): 5796-5804.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2.
Heine T, Zimmerling J, Ballmann A, Kleeberg SB, Rückert C, Busche T, Winkler A, Kalinowski J, Poetsch A, Scholtissek A, Oelschlägel M, Schmidt G, Tischler D., Appl Environ Microbiol 84(9), 2018
PMID: 29475871
Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.
Chen C, Pan J, Yang X, Xiao H, Zhang Y, Si M, Shen X, Wang Y., Arch Microbiol 199(2), 2017
PMID: 27766354
Global Transcriptomic Analysis of the Response of Corynebacterium glutamicum to Vanillin.
Chen C, Pan J, Yang X, Guo C, Ding W, Si M, Zhang Y, Shen X, Wang Y., PLoS One 11(10), 2016
PMID: 27760214
Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli.
Fernández C, Díaz E, García JL., Environ Microbiol Rep 6(3), 2014
PMID: 24983528
Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum.
Li T, Chen X, Chaudhry MT, Zhang B, Jiang CY, Liu SJ., J Biotechnol 192 Pt B(), 2014
PMID: 24480572
Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum.
Kazanov MD, Li X, Gelfand MS, Osterman AL, Rodionov DA., Nucleic Acids Res 41(2), 2013
PMID: 23209028
RegPrecise 3.0--a resource for genome-scale exploration of transcriptional regulation in bacteria.
Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I, Rodionov DA., BMC Genomics 14(), 2013
PMID: 24175918

49 References

Daten bereitgestellt von Europe PubMed Central.

MEME SUITE: tools for motif discovery and searching.
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19458158
Fast index based algorithms and software for matching position specific scoring matrices.
Beckstette M, Homann R, Giegerich R, Kurtz S., BMC Bioinformatics 7(), 2006
PMID: 16930469
Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming.
Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J, Goesmann A., Bioinformatics 27(10), 2011
PMID: 21450712
The identification of a -glutamate-producing bacterium AS 1.542
Chen Q, Li L-G., 1975
Coregulation by phenylacetyl-coenzyme A-responsive PaaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2.
del Peso-Santos T, Bartolome-Martin D, Fernandez C, Alonso S, Garcia JL, Diaz E, Shingler V, Perera J., J. Bacteriol. 188(13), 2006
PMID: 16788190
Bacterial promoters triggering biodegradation of aromatic pollutants.
Diaz E, Prieto MA., Curr. Opin. Biotechnol. 11(5), 2000
PMID: 11024365
Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway.
Ferrandez A, Minambres B, Garcia B, Olivera ER, Luengo JM, Garcia JL, Diaz E., J. Biol. Chem. 273(40), 1998
PMID: 9748275
Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U.
Garcia B, Olivera ER, Minambres B, Carnicero D, Muniz C, Naharro G, Luengo JM., Appl. Environ. Microbiol. 66(10), 2000
PMID: 11010921
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Regulation of phenylacetic acid degradation genes of Burkholderia cenocepacia K56-2.
Hamlin JN, Bloodworth RA, Cardona ST., BMC Microbiol. 9(), 2009
PMID: 19835630
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR., Gene 77(1), 1989
PMID: 2744488
Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.
Huang Y, Zhao KX, Shen XH, Chaudhry MT, Jiang CY, Liu SJ., Appl. Environ. Microbiol. 72(11), 2006
PMID: 16963551
Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source.
Huser AT, Becker A, Brune I, Dondrup M, Kalinowski J, Plassmeier J, Puhler A, Wiegrabe I, Tauch A., J. Biotechnol. 106(2-3), 2003
PMID: 14651867
NCBI BLAST: a better web interface.
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18440982
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
Protoplast transformation of glutamate-producing bacteria with plasmid DNA.
Katsumata R, Ozaki A, Oka T, Furuya A., J. Bacteriol. 159(1), 1984
PMID: 6145700
Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum.
Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM., J. Bacteriol. 188(2), 2006
PMID: 16385030
The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications.
Luengo JM, Garcia JL, Olivera ER., Mol. Microbiol. 39(6), 2001
PMID: 11260461
Recurring cluster and operon assembly for Phenylacetate degradation genes.
Martin FJ, McInerney JO., BMC Evol. Biol. 9(), 2009
PMID: 19208251
GenDB--an open source genome annotation system for prokaryote genomes.
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A., Nucleic Acids Res. 31(8), 2003
PMID: 12682369
Aerobic metabolism of phenylacetic acids in Azoarcus evansii.
Mohamed Mel-S, Ismail W, Heider J, Fuchs G., Arch. Microbiol. 178(3), 2002
PMID: 12189419
Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds.
Navarro-Llorens JM, Patrauchan MA, Stewart GR, Davies JE, Eltis LD, Mohn WW., J. Bacteriol. 187(13), 2005
PMID: 15968060
RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes.
Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA., Nucleic Acids Res. 38(Database issue), 2009
PMID: 19884135
RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach.
Novichkov PS, Rodionov DA, Stavrovskaya ED, Novichkova ES, Kazakov AE, Gelfand MS, Arkin AP, Mironov AA, Dubchak I., Nucleic Acids Res. 38(Web Server issue), 2010
PMID: 20542910
Sigma factors and promoters in Corynebacterium glutamicum.
Patek M, Nesvera J., J. Biotechnol. 154(2-3), 2011
PMID: 21277915
The TetR family of transcriptional repressors.
Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Teran W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R., Microbiol. Mol. Biol. Rev. 69(2), 2005
PMID: 15944459
Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction.
Ruckert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Puhler A, Kalinowski J., BMC Genomics 6(), 2005
PMID: 16159395

Sambrook J, Fritsch EF, Maniatis T., 1989
Genomic analysis and identification of catabolic pathways for aromatic compounds in
Shen X-H, Huang Y, Liu S-J., 2005
Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum.
Shen XH, Jiang CY, Huang Y, Liu ZP, Liu SJ., Appl. Environ. Microbiol. 71(7), 2005
PMID: 16000747
Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in
Shen X-H, Liu S-J., 2005
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
Teufel R, Mascaraque V, Ismail W, Voss M, Perera J, Eisenreich W, Haehnel W, Fuchs G., Proc. Natl. Acad. Sci. U.S.A. 107(32), 2010
PMID: 20660314
Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point.
Teufel R, Gantert C, Voss M, Eisenreich W, Haehnel W, Fuchs G., J. Biol. Chem. 286(13), 2011
PMID: 21296885
Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.
Yudistira H, McClarty L, Bloodworth RA, Hammond SA, Butcher H, Mark BL, Cardona ST., Microb. Pathog. 51(3), 2011
PMID: 21511027
PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
Zhao KX, Huang Y, Chen X, Wang NX, Liu SJ., J. Bacteriol. 192(6), 2010
PMID: 20081038
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22685150
PubMed | Europe PMC

Suchen in

Google Scholar