Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response

Vogel MO, Gomez Perez D, Probst N, Dietz K-J (2012)
International Journal of Molecular Sciences 13(12): 5933-5951.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Transcription factors of the APETALA 2/Ethylene Response Factor (AP2/ERF)-family have been implicated in diverse processes during development, stress acclimation and retrograde signaling. Fifty-three leaf-expressed AP2/ERFs were screened for their transcriptional response to abscisic acid (ABA), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), methylviologen (MV), sucrose and high or low light, respectively, and revealed high reactivity to these effectors. Six of them (AP2-2, ARF14, CEJ1, ERF8, ERF11, RAP2.5) were selected for combinatorial response analysis to ABA, DCMU and high light. Additive, synergistic and antagonistic effects demonstrated that these transcription factors are components of multiple signaling pathways. AP2-2 (At1g79700) was subjected to an in depth study. AP2-2 transcripts were high under conditions linked to limited carbohydrate availability and stress and down-regulated in extended light phase, high light or in the presence of sugar. ap2-2 knock out plants had unchanged metabolite profiles and transcript levels of co-expressed genes in extended darkness. However, ap2-2 revealed more efficient germination and faster early growth under high sugar, osmotic or salinity stress, but the difference was abolished in the absence of sugar or during subsequent growth. It is suggested that AP2-2 is involved in mediating starvation-related and hormonal signals.
Stichworte
photosynthesis; germination; Arabidopsis thaliana; abscisic acid; apetala2/ethylene response factor; transcription factor; retrograde signaling
Erscheinungsjahr
2012
Zeitschriftentitel
International Journal of Molecular Sciences
Band
13
Ausgabe
12
Seite(n)
5933-5951
ISSN
1422-0067
eISSN
1422-0067
Page URI
https://pub.uni-bielefeld.de/record/2518056

Zitieren

Vogel MO, Gomez Perez D, Probst N, Dietz K-J. Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response. International Journal of Molecular Sciences. 2012;13(12):5933-5951.
Vogel, M. O., Gomez Perez, D., Probst, N., & Dietz, K. - J. (2012). Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response. International Journal of Molecular Sciences, 13(12), 5933-5951. doi:10.3390/ijms13055933
Vogel, Marc Oliver, Gomez Perez, Deborah, Probst, Nina, and Dietz, Karl-Josef. 2012. “Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response”. International Journal of Molecular Sciences 13 (12): 5933-5951.
Vogel, M. O., Gomez Perez, D., Probst, N., and Dietz, K. - J. (2012). Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response. International Journal of Molecular Sciences 13, 5933-5951.
Vogel, M.O., et al., 2012. Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response. International Journal of Molecular Sciences, 13(12), p 5933-5951.
M.O. Vogel, et al., “Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response”, International Journal of Molecular Sciences, vol. 13, 2012, pp. 5933-5951.
Vogel, M.O., Gomez Perez, D., Probst, N., Dietz, K.-J.: Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response. International Journal of Molecular Sciences. 13, 5933-5951 (2012).
Vogel, Marc Oliver, Gomez Perez, Deborah, Probst, Nina, and Dietz, Karl-Josef. “Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response”. International Journal of Molecular Sciences 13.12 (2012): 5933-5951.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Regulation of Apetala2/Ethylene Response Factors in Plants.
Phukan UJ, Jeena GS, Tripathi V, Shukla RK., Front Plant Sci 8(), 2017
PMID: 28270817
AfAP2-1, An Age-Dependent Gene of Aechmea fasciata, Responds to Exogenous Ethylene Treatment.
Lei M, Li ZY, Wang JB, Fu YL, Ao MF, Xu L., Int J Mol Sci 17(3), 2016
PMID: 26927090
Ethylene Response Factors Are Controlled by Multiple Harvesting Stresses in Hevea brasiliensis.
Putranto RA, Duan C, Kuswanhadi, Chaidamsari T, Rio M, Piyatrakul P, Herlinawati E, Pirrello J, Dessailly F, Leclercq J, Bonnot F, Tang C, Hu S, Montoro P., PLoS One 10(4), 2015
PMID: 25906196
The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically Regulate Mannitol-Induced Growth Inhibition in Arabidopsis.
Dubois M, Van den Broeck L, Claeys H, Van Vlierberghe K, Matsui M, Inzé D., Plant Physiol 169(1), 2015
PMID: 25995327
Role of ethylene in responses of plants to nitrogen availability.
Khan MI, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA., Front Plant Sci 6(), 2015
PMID: 26579172
A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA.
Fu M, Kang HK, Son SH, Kim SK, Nam KH., Plant Cell Physiol 55(11), 2014
PMID: 25189341

53 References

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G., Science 290(5499), 2000
PMID: 11118137
Functional analysis of transcription factors in Arabidopsis.
Mitsuda N, Ohme-Takagi M., Plant Cell Physiol. 50(7), 2009
PMID: 19478073
Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.
Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK., Plant Cell 6(9), 1994
PMID: 7919989
Signals from chloroplasts converge to regulate nuclear gene expression.
Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J., Science 316(5825), 2007
PMID: 17395793
Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor.
Khandelwal A, Elvitigala T, Ghosh B, Quatrano RS., Plant Physiol. 148(4), 2008
PMID: 18829981
An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression.
Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K., Biochem. Biophys. Res. Commun. 250(1), 1998
PMID: 9735350
Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression.
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Cell 18(5), 2006
PMID: 16617101
Abiotic stress signalling pathways: specificity and cross-talk.
Knight H, Knight MR., Trends Plant Sci. 6(6), 2001
PMID: 11378468
Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray.
Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K., Funct. Integr. Genomics 2(6), 2002
PMID: 12444421
Regulatory network of gene expression in the drought and cold stress responses.
Shinozaki K, Yamaguchi-Shinozaki K, Seki M., Curr. Opin. Plant Biol. 6(5), 2003
PMID: 12972040
Role of DREB transcription factors in abiotic and biotic stress tolerance in plants.
Agarwal PK, Agarwal P, Reddy MK, Sopory SK., Plant Cell Rep. 25(12), 2006
PMID: 16858552
Plastid signalling to the nucleus and beyond.
Pogson BJ, Woo NS, Forster B, Small ID., Trends Plant Sci. 13(11), 2008
PMID: 18838332
Complete structure of the chloroplast genome of Arabidopsis thaliana.
Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S., DNA Res. 6(5), 1999
PMID: 10574454
A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis.
Abdallah F, Salamini F, Leister D., Trends Plant Sci. 5(4), 2000
PMID: 10928822
Plastid-to-nucleus signalling.
Strand A., Curr. Opin. Plant Biol. 7(6), 2004
PMID: 15491909
Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses.
Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, Rook F, Bevan MW., Plant Physiol. 134(1), 2003
PMID: 14684841
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K., Plant Cell 15(10), 2003
PMID: 14508004
Hubs and bottlenecks in plant molecular signalling networks.
Dietz KJ, Jacquot JP, Harris G., New Phytol. 188(4), 2010
PMID: 20958306
Stomatal control of photosynthesis and transpiration
Jones H.G.., 1998
AKINbeta1 is involved in the regulation of nitrogen metabolism and sugar signaling in Arabidopsis.
Li XF, Li YJ, An YH, Xiong LJ, Shao XH, Wang Y, Sun Y., J Integr Plant Biol 51(5), 2009
PMID: 19397750
The AP2/EREBP family of plant transcription factors.
Riechmann JL, Meyerowitz EM., Biol. Chem. 379(6), 1998
PMID: 9687012
Gene network analysis in plant development by genomic technologies.
Wellmer F, Riechmann JL., Int. J. Dev. Biol. 49(5-6), 2005
PMID: 16096979
The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH., Plant Cell 23(9), 2011
PMID: 21926335
Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions.
Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI., Genes Dev. 24(16), 2010
PMID: 20713515
Abscisic acid biosynthesis and catabolism.
Nambara E, Marion-Poll A., Annu Rev Plant Biol 56(), 2005
PMID: 15862093
The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells.
Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineaux PM., Plant Cell 21(7), 2009
PMID: 19638476
Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green.
Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR., J. Exp. Bot. 57(8), 2006
PMID: 16595576
A novel group of transcriptional repressors in Arabidopsis.
Ikeda M, Ohme-Takagi M., Plant Cell Physiol. 50(5), 2009
PMID: 19324928
Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response.
Son GH, Wan J, Kim HJ, Nguyen XC, Chung WS, Hong JC, Stacey G., Mol. Plant Microbe Interact. 25(1), 2012
PMID: 21936663
Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation.
Contento AL, Kim SJ, Bassham DC., Plant Physiol. 135(4), 2004
PMID: 15310832
The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein.
Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM., Plant Cell 10(6), 1998
PMID: 9634591
Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability.
Wormuth D, Baier M, Kandlbinder A, Scheibe R, Hartung W, Dietz KJ., BMC Plant Biol. 6(), 2006
PMID: 16916444
The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress.
Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz KJ., J. Biol. Chem. 280(13), 2005
PMID: 15632145
Genome-wide insertional mutagenesis of Arabidopsis thaliana.
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR., Science 301(5633), 2003
PMID: 12893945
A simple and rapid method for the preparation of plant genomic DNA for PCR analysis.
Edwards K, Johnstone C, Thompson C., Nucleic Acids Res. 19(6), 1991
PMID: 2030957
Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.
Barsch A, Patschkowski T, Niehaus K., Funct. Integr. Genomics 4(4), 2004
PMID: 15372312
Rate-limiting factors in leaf photosynthesis. I. Carbon fluxes in the Calvin cycle
Dietz K.J., Heber U.., 1984
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22754341
PubMed | Europe PMC

Suchen in

Google Scholar