Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets

König J, Muthuramalingam M, Dietz K-J (2012)
Current opinion in plant biology 15(3): 261-268.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Plant cells sense, weigh and integrate various endogenous and exogenous cues in order to optimize acclimation and resource allocation. The thiol/disulfide redox network appears to be in the core of this versatile integration process. In plant cells its complexity exceeds by far that of other organisms. Recent research has elucidated the multiplicity of the diversified input elements, transmitters (thioredoxin, glutaredoxins), targets and sensors (peroxiredoxins and other peroxidases), controlled processes and final acceptors (reactive oxygen species). An additional level of thiol/disulfide regulation is achieved by introducing dynamics in time and subcompartment and complex association. Copyright 2011 Elsevier Ltd. All rights reserved.
Erscheinungsjahr
2012
Zeitschriftentitel
Current opinion in plant biology
Band
15
Ausgabe
3
Seite(n)
261-268
ISSN
1369-5266
Page URI
https://pub.uni-bielefeld.de/record/2513339

Zitieren

König J, Muthuramalingam M, Dietz K-J. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Current opinion in plant biology. 2012;15(3):261-268.
König, J., Muthuramalingam, M., & Dietz, K. - J. (2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Current opinion in plant biology, 15(3), 261-268. doi:10.1016/j.pbi.2011.12.002
König, Janine, Muthuramalingam, Meenakumari, and Dietz, Karl-Josef. 2012. “Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets”. Current opinion in plant biology 15 (3): 261-268.
König, J., Muthuramalingam, M., and Dietz, K. - J. (2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Current opinion in plant biology 15, 261-268.
König, J., Muthuramalingam, M., & Dietz, K.-J., 2012. Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Current opinion in plant biology, 15(3), p 261-268.
J. König, M. Muthuramalingam, and K.-J. Dietz, “Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets”, Current opinion in plant biology, vol. 15, 2012, pp. 261-268.
König, J., Muthuramalingam, M., Dietz, K.-J.: Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Current opinion in plant biology. 15, 261-268 (2012).
König, Janine, Muthuramalingam, Meenakumari, and Dietz, Karl-Josef. “Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets”. Current opinion in plant biology 15.3 (2012): 261-268.

41 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.
Nikkanen L, Rintamäki E., Biochem J 476(7), 2019
PMID: 30988137
Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome.
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J., Front Plant Sci 9(), 2018
PMID: 29472941
Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation.
Dreyer A, Dietz KJ., Antioxidants (Basel) 7(11), 2018
PMID: 30469375
ROS Are Good.
Mittler R., Trends Plant Sci 22(1), 2017
PMID: 27666517
Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
Hossain MS, ElSayed AI, Moore M, Dietz KJ., J Exp Bot 68(5), 2017
PMID: 28338762
Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in Brassica juncea.
Srivastava AK, Sablok G, Hackenberg M, Deshpande U, Suprasanna P., Sci Rep 7(), 2017
PMID: 28382938
Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions.
Renau-Morata B, Molina RV, Carrillo L, Cebolla-Cornejo J, Sánchez-Perales M, Pollmann S, Domínguez-Figueroa J, Corrales AR, Flexas J, Vicente-Carbajosa J, Medina J, Nebauer SG., Front Plant Sci 8(), 2017
PMID: 28515731
The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation.
Pérez-Pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH., Mol Plant 10(8), 2017
PMID: 28739495
Chloroplast thioredoxin systems: prospects for improving photosynthesis.
Nikkanen L, Toivola J, Diaz MG, Rintamäki E., Philos Trans R Soc Lond B Biol Sci 372(1730), 2017
PMID: 28808108
The impact of thiol peroxidases on redox regulation.
Flohé L., Free Radic Res 50(2), 2016
PMID: 26291534
Plant protein 2-Cys peroxiredoxin TaBAS1 alleviates oxidative and nitrosative stresses incurred during cryopreservation of mammalian cells.
Chow-Shi-Yée M, Grondin M, Averill-Bates DA, Ouellet F., Biotechnol Bioeng 113(7), 2016
PMID: 26724792
Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.
Chow-Shi-Yée M, Briard JG, Grondin M, Averill-Bates DA, Ben RN, Ouellet F., Protein Sci 25(5), 2016
PMID: 26889747
Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis.
Nikkanen L, Toivola J, Rintamäki E., Plant Cell Environ 39(8), 2016
PMID: 26831830
Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress.
Zinta G, Khan A, AbdElgawad H, Verma V, Srivastava AK., Front Plant Sci 7(), 2016
PMID: 27379102
The evolution of reactive oxygen species metabolism.
Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, Mittler R., J Exp Bot 67(21), 2016
PMID: 27742750
ROS-Mediated Inhibition of S-nitrosoglutathione Reductase Contributes to the Activation of Anti-oxidative Mechanisms.
Kovacs I, Holzmeister C, Wirtz M, Geerlof A, Fröhlich T, Römling G, Kuruthukulangarakoola GT, Linster E, Hell R, Arnold GJ, Durner J, Lindermayr C., Front Plant Sci 7(), 2016
PMID: 27891135
Loss of APD1 in yeast confers hydroxyurea sensitivity suppressed by Yap1p transcription factor.
Tang HM, Pan K, Kong KY, Hu L, Chan LC, Siu KL, Sun H, Wong CM, Jin DY., Sci Rep 5(), 2015
PMID: 25600293
Photosynthetic light reactions: integral to chloroplast retrograde signalling.
Gollan PJ, Tikkanen M, Aro EM., Curr Opin Plant Biol 27(), 2015
PMID: 26318477
Redox regulation of Arabidopsis mitochondrial citrate synthase.
Schmidtmann E, König AC, Orwat A, Leister D, Hartl M, Finkemeier I., Mol Plant 7(1), 2014
PMID: 24198232
Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling.
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B., J Exp Bot 65(19), 2014
PMID: 24863438
Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants.
Thormählen I, Ruber J, von Roepenack-Lahaye E, Ehrlich SM, Massot V, Hümmer C, Tezycka J, Issakidis-Bourguet E, Geigenberger P., Plant Cell Environ 36(1), 2013
PMID: 22646759
Oxidative folding in chloroplasts.
Kieselbach T., Antioxid Redox Signal 19(1), 2013
PMID: 23289792
Mitochondrial energy and redox signaling in plants.
Schwarzländer M, Finkemeier I., Antioxid Redox Signal 18(16), 2013
PMID: 23234467
From top-down to bottom-up: computational modeling approaches for cellular redoxin networks.
Pillay CS, Hofmeyr JH, Mashamaite LN, Rohwer JM., Antioxid Redox Signal 18(16), 2013
PMID: 23249367
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Advances in purification and separation of posttranslationally modified proteins.
Černý M, Skalák J, Cerna H, Brzobohatý B., J Proteomics 92(), 2013
PMID: 23777897
The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone.
König J, Galliardt H, Jütte P, Schäper S, Dittmann L, Dietz KJ., J Exp Bot 64(11), 2013
PMID: 23828546
Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains.
Toivola J, Nikkanen L, Dahlström KM, Salminen TA, Lepistö A, Vignols HF, Rintamäki E., Front Plant Sci 4(), 2013
PMID: 24115951
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22226570
PubMed | Europe PMC

Suchen in

Google Scholar