Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess

Rose MT, Rose TJ, Pariasca-Tanaka J, Yoshihashi T, Neuweger H, Goesmann A, Frei M, Wissuwa M (2012)
Planta 236(4): 959-973.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Rose, Michael T; Rose, Terry J; Pariasca-Tanaka, Juan; Yoshihashi, Tadashi; Neuweger, HeikoUniBi; Goesmann, AlexanderUniBi ; Frei, Michael; Wissuwa, Matthias
Abstract / Bemerkung
Plants are routinely subjected to multiple environmental stresses that constrain growth. Zinc (Zn) deficiency and high bicarbonate are two examples that co-occur in many soils used for rice production. Here, the utility of metabolomics in diagnosing the effect of each stress alone and in combination on rice root function is demonstrated, with potential stress tolerance indicators identified through the use of contrasting genotypes. Responses to the dual stress of combined Zn deficiency and bicarbonate excess included greater root solute leakage, reduced dry matter production, lower monosaccharide accumulation and increased concentrations of hydrogen peroxide, phenolics, peroxidase and N-rich metabolites in roots. Both hydrogen peroxide concentration and root solute leakage were correlated with higher levels of citrate, allantoin and stigmasterol. Zn stress resulted in lower levels of the tricarboxylic acid (TCA) cycle intermediate succinate and the aromatic amino acid tyrosine. Bicarbonate stress reduced shoot iron (Fe) concentrations, which was reflected by lower Fe-dependent ascorbate peroxidase activity. Bicarbonate stress also favoured the accumulation of the TCA cycle intermediates malate, fumarate and succinate, along with the non-polar amino acid tyrosine. Genotypic differentiation revealed constitutively higher levels of D: -gluconate, 2-oxoglutarate and two unidentified compounds in the Zn-efficient line RIL46 than the Zn-inefficient cultivar IR74, suggesting a possible role for these metabolites in overcoming oxidative stress or improving metal re-distribution.
Erscheinungsjahr
2012
Zeitschriftentitel
Planta
Band
236
Ausgabe
4
Seite(n)
959-973
ISSN
0032-0935
eISSN
1432-2048
Page URI
https://pub.uni-bielefeld.de/record/2500990

Zitieren

Rose MT, Rose TJ, Pariasca-Tanaka J, et al. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta. 2012;236(4):959-973.
Rose, M. T., Rose, T. J., Pariasca-Tanaka, J., Yoshihashi, T., Neuweger, H., Goesmann, A., Frei, M., et al. (2012). Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta, 236(4), 959-973. doi:10.1007/s00425-012-1648-4
Rose, Michael T, Rose, Terry J, Pariasca-Tanaka, Juan, Yoshihashi, Tadashi, Neuweger, Heiko, Goesmann, Alexander, Frei, Michael, and Wissuwa, Matthias. 2012. “Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess”. Planta 236 (4): 959-973.
Rose, M. T., Rose, T. J., Pariasca-Tanaka, J., Yoshihashi, T., Neuweger, H., Goesmann, A., Frei, M., and Wissuwa, M. (2012). Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta 236, 959-973.
Rose, M.T., et al., 2012. Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta, 236(4), p 959-973.
M.T. Rose, et al., “Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess”, Planta, vol. 236, 2012, pp. 959-973.
Rose, M.T., Rose, T.J., Pariasca-Tanaka, J., Yoshihashi, T., Neuweger, H., Goesmann, A., Frei, M., Wissuwa, M.: Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess. Planta. 236, 959-973 (2012).
Rose, Michael T, Rose, Terry J, Pariasca-Tanaka, Juan, Yoshihashi, Tadashi, Neuweger, Heiko, Goesmann, Alexander, Frei, Michael, and Wissuwa, Matthias. “Root metabolic response of rice (Oryza sativa L.) genotypes with contrasting tolerance to zinc deficiency and bicarbonate excess”. Planta 236.4 (2012): 959-973.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Zinc stress affects ionome and metabolome in tea plants.
Zhang Y, Wang Y, Ding Z, Wang H, Song L, Jia S, Ma D., Plant Physiol Biochem 111(), 2017
PMID: 27992770
Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis.
Lee JS, Sajise AGC, Gregorio GB, Kretzschmar T, Ismail AM, Wissuwa M., Theor Appl Genet 130(9), 2017
PMID: 28623548
Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress.
Lee JS, Wissuwa M, Zamora OB, Ismail AM., J Plant Res 130(6), 2017
PMID: 28667406
Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils.
Affholder MC, Weiss DJ, Wissuwa M, Johnson-Beebout SE, Kirk GJD., Plant Cell Environ 40(12), 2017
PMID: 28898428
The role of root size versus root efficiency in phosphorus acquisition in rice.
Mori A, Fukuda T, Vejchasarn P, Nestler J, Pariasca-Tanaka J, Wissuwa M., J Exp Bot 67(4), 2016
PMID: 26842979
Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner.
Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A., J Exp Bot 67(8), 2016
PMID: 26931169
The use of metabolomics in the study of metals in biological systems.
Jones OA, Dias DA, Callahan DL, Kouremenos KA, Beale DJ, Roessner U., Metallomics 7(1), 2015
PMID: 25047028
Rice Genotype Differences in Tolerance of Zinc-Deficient Soils: Evidence for the Importance of Root-Induced Changes in the Rhizosphere.
Mori A, Kirk GJ, Lee JS, Morete MJ, Nanda AK, Johnson-Beebout SE, Wissuwa M., Front Plant Sci 6(), 2015
PMID: 26793198
Ascorbate metabolism in rice genotypes differing in zinc efficiency.
Höller S, Hajirezaei MR, von Wirén N, Frei M., Planta 239(2), 2014
PMID: 24173698
The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism.
Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A., Plant Cell Environ 37(4), 2014
PMID: 24182190
Comparative metabolomic analysis of wild type and mads3 mutant rice anthers.
Qu G, Quan S, Mondol P, Xu J, Zhang D, Shi J., J Integr Plant Biol 56(9), 2014
PMID: 25073727

63 References

Daten bereitgestellt von Europe PubMed Central.

Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis.
Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK., Plant Mol. Biol. 65(4), 2007
PMID: 17610133
Plant molecular stress responses face climate change.
Ahuja I, de Vos RC, Bones AM, Hall RD., Trends Plant Sci. 15(12), 2010
PMID: 20846898
Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L.
Alamillo JM, Diaz-Leal JL, Sanchez-Moran MV, Pineda M., Plant Cell Environ. 33(11), 2010
PMID: 20545885

B, 2008
Evidence for the mechanisms of zinc uptake by rice using isotope fractionation.
Arnold T, Kirk GJ, Wissuwa M, Frei M, Zhao FJ, Mason TF, Weiss DJ., Plant Cell Environ. 33(3), 2009
PMID: 19929899
Metabolomics and its role in understanding cellular responses in plants.
Bhalla R, Narasimhan K, Swarup S., Plant Cell Rep. 24(10), 2005
PMID: 16220342
Zinc in plants.
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A., New Phytol. 173(4), 2007
PMID: 17286818
Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit
Chen Jy, He Lh, Jiang Ym, Wang Y, Joyce DC, Ji Zl, Lu Wj., Physiol Plant 132(3), 2008
PMID: IND44012279

A, 2000
Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots.
Donnini S, Prinsi B, Negri AS, Vigani G, Espen L, Zocchi G., BMC Plant Biol. 10(), 2010
PMID: 21122124
Metabolite profiling for plant functional genomics.
Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L., Nat. Biotechnol. 18(11), 2000
PMID: 11062433
Quality control for plant metabolomics: reporting MSI-compliant studies.
Fiehn O, Wohlgemuth G, Scholz M, Kind T, Lee DY, Lu Y, Moon S, Nikolau B., Plant J. 53(4), 2008
PMID: 18269577
Biochemical factors conferring shoot tolerance to oxidative stress in rice grown in low zinc soil
Frei Michael, Wang Yunxia, Ismail AbdelbagiM, Wissuwa Matthias., Funct. Plant Biol. 37(1), 2010
PMID: IND44309232
Identification and quantification of antioxidant components of honeys from various floral sources.
Gheldof N, Wang XH, Engeseth NJ., J. Agric. Food Chem. 50(21), 2002
PMID: 12358452
Superoxide dismutases: I. Occurrence in higher plants.
Giannopolitis CN, Ries SK., Plant Physiol. 59(2), 1977
PMID: 16659839

AUTHOR UNKNOWN, 0

M, Underst Stat 3(), 2004

R, Environ Exp Bot 54(), 2005

LE, J Exp Bot 48(), 1997
Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions.
Hollander-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW., J. Plant Physiol. 162(7), 2005
PMID: 16008101

I, Plant Cell Physiol 23(), 1982
Genetic and genomic approaches to develop rice germplasm for problem soils.
Ismail AM, Heuer S, Thomson MJ, Wissuwa M., Plant Mol. Biol. 65(4), 2007
PMID: 17703278

N, Sci Hort 129(), 2011

GJD, 2004
integrOmics: an R package to unravel relationships between two omics datasets.
Le Cao KA, Gonzalez I, Dejean S., Bioinformatics 25(21), 2009
PMID: 19706745
Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity.
Lopez-Perez L, Martinez-Ballesta Mdel C, Maurel C, Carvajal M., Phytochemistry 70(4), 2009
PMID: 19264331
Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism.
Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H, Yamauchi Y, Yoshida K, Hirata K, Miyamoto K., Angew. Chem. Int. Ed. Engl. 43(18), 2004
PMID: 15114569

K, Plant Soil 165(), 1995
Abiotic stress, the field environment and stress combination.
Mittler R., Trends Plant Sci. 11(1), 2005
PMID: 16359910

Y, Plant Cell Physiol 22(), 1981

AUTHOR UNKNOWN, 0
Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants.
Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R., Plant Physiol. 138(1), 2005
PMID: 15834012
A gamma-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis.
Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver DJ., Plant Physiol. 148(3), 2008
PMID: 18768907

K, Plant Sci 165(), 2003
Plant sterols: biosynthesis, biological function and their importance to human nutrition.
Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM., J. Sci. Food Agric. 80(7), 2000
PMID: IND22079328

R, 2010

K, Plant Biosyst 141(), 2007
Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems.
Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A., Plant Cell 13(1), 2001
PMID: 11158526

M, Plant Sci 135(), 1998
Metabolomics for plant stress response
Shulaev V, Cortes D, Miller G, Mittler R., Physiol Plant 132(2), 2008
PMID: IND43999346
Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis.
Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ., Plant Physiol. 127(3), 2001
PMID: 11706184
Phenylpropanoid biosynthesis.
Vogt T., Mol Plant 3(1), 2009
PMID: 20035037

P, Plant Soil 296(), 2007

AUTHOR UNKNOWN, 0
Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance.
Wissuwa M, Ismail AM, Yanagihara S., Plant Physiol. 142(2), 2006
PMID: 16905666
Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination.
Witzel K, Weidner A, Surabhi GK, Varshney RK, Kunze G, Buck-Sorlin GH, Borner A, Mock HP., Plant Cell Environ. 33(2), 2009
PMID: 19906151

SD, 1976
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22526504
PubMed | Europe PMC

Suchen in

Google Scholar