Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment

Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, Maisner A (2012)
Journal of Virology 86(7): 3736-3745.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Diederich, Sandra; Sauerhering, Lucie; Weis, Michael; Altmeppen, Hermann; Schaschke, NorbertUniBi; Reinheckel, Thomas; Erbar, Stephanie; Maisner, Andrea
Abstract / Bemerkung
Proteolytic activation of the fusion protein of the highly pathogenic Nipah virus (NiV F) is a prerequisite for the production of infectious particles and for virus spread via cell-to-cell fusion. Unlike other paramyxoviral fusion proteins, functional NiV F activation requires endocytosis and pH-dependent cleavage at a monobasic cleavage site by endosomal proteases. Using prototype Vero cells, cathepsin L was previously identified to be a cleavage enzyme. Compared to Vero cells, MDCK cells showed substantially higher F cleavage rates in both NiV-infected and NiV F-transfected cells. Surprisingly, this could not be explained either by an increased F endocytosis rate or by elevated cathepsin L activities. On the contrary, MDCK cells did not display any detectable cathepsin L activity. Though we could confirm cathepsin L to be responsible for F activation in Vero cells, inhibitor studies revealed that in MDCK cells, cathepsin B was required for F-protein cleavage and productive replication of pathogenic NiV. Supporting the idea of an efficient F cleavage in early and recycling endosomes of MDCK cells, endocytosed F proteins and cathepsin B colocalized markedly with the endosomal marker proteins early endosomal antigen 1 (EEA-1), Rab4, and Rab11, while NiV F trafficking through late endosomal compartments was not needed for F activation. In summary, this study shows for the first time that endosomal cathepsin B can play a functional role in the activation of highly pathogenic NiV.
Erscheinungsjahr
2012
Zeitschriftentitel
Journal of Virology
Band
86
Ausgabe
7
Seite(n)
3736-3745
ISSN
0022-538X
Page URI
https://pub.uni-bielefeld.de/record/2489135

Zitieren

Diederich S, Sauerhering L, Weis M, et al. Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment. Journal of Virology. 2012;86(7):3736-3745.
Diederich, S., Sauerhering, L., Weis, M., Altmeppen, H., Schaschke, N., Reinheckel, T., Erbar, S., et al. (2012). Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment. Journal of Virology, 86(7), 3736-3745. doi:10.1128/JVI.06628.11
Diederich, Sandra, Sauerhering, Lucie, Weis, Michael, Altmeppen, Hermann, Schaschke, Norbert, Reinheckel, Thomas, Erbar, Stephanie, and Maisner, Andrea. 2012. “Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment”. Journal of Virology 86 (7): 3736-3745.
Diederich, S., Sauerhering, L., Weis, M., Altmeppen, H., Schaschke, N., Reinheckel, T., Erbar, S., and Maisner, A. (2012). Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment. Journal of Virology 86, 3736-3745.
Diederich, S., et al., 2012. Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment. Journal of Virology, 86(7), p 3736-3745.
S. Diederich, et al., “Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment”, Journal of Virology, vol. 86, 2012, pp. 3736-3745.
Diederich, S., Sauerhering, L., Weis, M., Altmeppen, H., Schaschke, N., Reinheckel, T., Erbar, S., Maisner, A.: Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment. Journal of Virology. 86, 3736-3745 (2012).
Diederich, Sandra, Sauerhering, Lucie, Weis, Michael, Altmeppen, Hermann, Schaschke, Norbert, Reinheckel, Thomas, Erbar, Stephanie, and Maisner, Andrea. “Activation of the Nipah Virus Fusion Protein in MDCK Cells Is Mediated by Cathepsin B within the Endosome-Recycling Compartment”. Journal of Virology 86.7 (2012): 3736-3745.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus.
Flint M, Chatterjee P, Lin DL, McMullan LK, Shrivastava-Ranjan P, Bergeron É, Lo MK, Welch SR, Nichol ST, Tai AW, Spiropoulou CF., Nat Commun 10(1), 2019
PMID: 30655525
Nipah virus induces two inclusion body populations: Identification of novel inclusions at the plasma membrane.
Ringel M, Heiner A, Behner L, Halwe S, Sauerhering L, Becker N, Dietzel E, Sawatsky B, Kolesnikova L, Maisner A., PLoS Pathog 15(4), 2019
PMID: 31034506
Influenza Virus Overcomes Cellular Blocks To Productively Replicate, Impacting Macrophage Function.
Marvin SA, Russier M, Huerta CT, Russell CJ, Schultz-Cherry S., J Virol 91(2), 2017
PMID: 27807237
Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress.
Johnston GP, Contreras EM, Dabundo J, Henderson BA, Matz KM, Ortega V, Ramirez A, Park A, Aguilar HC., J Virol 91(10), 2017
PMID: 28250132
Mutations in the Transmembrane Domain and Cytoplasmic Tail of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly.
Cifuentes-Muñoz N, Sun W, Ray G, Schmitt PT, Webb S, Gibson K, Dutch RE, Schmitt AP., J Virol 91(14), 2017
PMID: 28468881
Recycling Endosomes and Viral Infection.
Vale-Costa S, Amorim MJ., Viruses 8(3), 2016
PMID: 27005655
The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells.
Hoffmann M, Krüger N, Zmora P, Wrensch F, Herrler G, Pöhlmann S., PLoS One 11(3), 2016
PMID: 27028521
Fusion of Enveloped Viruses in Endosomes.
White JM, Whittaker GR., Traffic 17(6), 2016
PMID: 26935856
Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells.
Sauerhering L, Zickler M, Elvert M, Behner L, Matrosovich T, Erbar S, Matrosovich M, Maisner A., J Gen Virol 97(7), 2016
PMID: 27075405
Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges.
Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH., Protoplasma 252(3), 2015
PMID: 25398648
Unity in diversity: shared mechanism of entry among paramyxoviruses.
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM., Prog Mol Biol Transl Sci 129(), 2015
PMID: 25595799
Protease inhibitors targeting coronavirus and filovirus entry.
Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, Simmons G., Antiviral Res 116(), 2015
PMID: 25666761
Fusion activity of African henipavirus F proteins with a naturally occurring start codon directly upstream of the signal peptide.
Weis M, Behner L, Binger T, Drexler JF, Drosten C, Maisner A., Virus Res 201(), 2015
PMID: 25725148
Cathepsin W Is Required for Escape of Influenza A Virus from Late Endosomes.
Edinger TO, Pohl MO, Yángüez E, Stertz S., MBio 6(3), 2015
PMID: 26060270
Characterization of African bat henipavirus GH-M74a glycoproteins.
Weis M, Behner L, Hoffmann M, Krüger N, Herrler G, Drosten C, Drexler JF, Dietzel E, Maisner A., J Gen Virol 95(pt 3), 2014
PMID: 24296468
Co-assembly of viral envelope glycoproteins regulates their polarized sorting in neurons.
Mattera R, Farías GG, Mardones GA, Bonifacino JS., PLoS Pathog 10(5), 2014
PMID: 24831812
Theoretical insight into the mechanism for the inhibition of the cysteine protease cathepsin B by 1,2,4-thiadiazole derivatives.
Vega-Teijido MA, El Chamy Maluf S, Bonturi CR, Sambrano JR, Ventura ON., J Mol Model 20(6), 2014
PMID: 24881000
Detailed morphological characterisation of Hendra virus infection of different cell types using super-resolution and conventional imaging.
Monaghan P, Green D, Pallister J, Klein R, White J, Williams C, McMillan P, Tilley L, Lampe M, Hawes P, Wang LF., Virol J 11(), 2014
PMID: 25428656
Nipah virus entry and egress from polarized epithelial cells.
Lamp B, Dietzel E, Kolesnikova L, Sauerhering L, Erbar S, Weingartl H, Maisner A., J Virol 87(6), 2013
PMID: 23283941
Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein.
Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A., PLoS Pathog 9(4), 2013
PMID: 23593008
Proteolytic processing of the prion protein in health and disease.
Altmeppen HC, Puig B, Dohler F, Thurm DK, Falker C, Krasemann S, Glatzel M., Am J Neurodegener Dis 1(1), 2012
PMID: 23383379
In search of cathepsins: how reovirus enters host cells.
Mainou BA, Dermody TS., DNA Cell Biol 31(12), 2012
PMID: 23134451
Host cell factors in filovirus entry: novel players, new insights.
Hofmann-Winkler H, Kaup F, Pöhlmann S., Viruses 4(12), 2012
PMID: 23342362

81 References

Daten bereitgestellt von Europe PubMed Central.

Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling.
Aguilar HC, Matreyek KA, Choi DY, Filone CM, Young S, Lee B., J. Virol. 81(9), 2007
PMID: 17301148
Hydrolysis by cathepsin B of fluorescent peptides derived from human prorenin.
Almeida PC, Oliveira V, Chagas JR, Meldal M, Juliano MA, Juliano L., Hypertension 35(6), 2000
PMID: 10856277
Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection.
Bayer N, Schober D, Prchla E, Murphy RF, Blaas D, Fuchs R., J. Virol. 72(12), 1998
PMID: 9811698
Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S.
Biniossek ML, Nagler DK, Becker-Pauly C, Schilling O., J. Proteome Res. 10(12), 2011
PMID: 21967108
Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus.
Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC., Proc. Natl. Acad. Sci. U.S.A. 102(30), 2005
PMID: 15998730
Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins.
Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, Broder CC., J. Virol. 76(22), 2002
PMID: 12388678
Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium.
Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M., J. Virol. 80(19), 2006
PMID: 16973594
Cysteine cathepsins: cellular roadmap to different functions.
Brix K, Dunkhorst A, Mayer K, Jordans S., Biochimie 90(2), 2007
PMID: 17825974
Nipah virus-associated encephalitis outbreak, Siliguri, India.
Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra A., Emerging Infect. Dis. 12(2), 2006
PMID: 16494748
Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection.
Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM., Science 308(5728), 2005
PMID: 15831716
Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia.
Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT., Lancet 354(9186), 1999
PMID: 10520635
Nipah virus: a recently emergent deadly paramyxovirus.
Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BW., Science 288(5470), 2000
PMID: 10827955
Apical cargo traverses endosomal compartments on the passage to the cell surface.
Cramm-Behrens CI, Dienst M, Jacob R., Traffic 9(12), 2008
PMID: 18785995
Design of cathepsin K inhibitors for osteoporosis.
Deaton DN, Tavares FX., Curr Top Med Chem 5(16), 2005
PMID: 16375747
Role of endocytosis and cathepsin-mediated activation in Nipah virus entry.
Diederich S, Thiel L, Maisner A., Virology 375(2), 2008
PMID: 18342904
The nipah virus fusion protein is cleaved within the endosomal compartment.
Diederich S, Moll M, Klenk HD, Maisner A., J. Biol. Chem. 280(33), 2005
PMID: 15961384
Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells.
Ebert DH, Deussing J, Peters C, Dermody TS., J. Biol. Chem. 277(27), 2002
PMID: 11986312
Selective receptor expression restricts Nipah virus infection of endothelial cells.
Erbar S, Diederich S, Maisner A., Virol. J. 5(), 2008
PMID: 19036148
Neuronal loss and brain atrophy in mice lacking cathepsins B and L.
Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, Olsen BR., Proc. Natl. Acad. Sci. U.S.A. 99(12), 2002
PMID: 12048238
Rab 7: an important regulator of late endocytic membrane traffic.
Feng Y, Press B, Wandinger-Ness A., J. Cell Biol. 131(6 Pt 1), 1995
PMID: 8522602
Endosomal proteases and antigen processing.
Fineschi B, Miller J., Trends Biochem. Sci. 22(10), 1997
PMID: 9357312
Endothelial galectin-1 binds to specific glycans on nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation.
Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R, Wright L, Robinson LR, Aspericueta V, Panico M, Haslam SM, Morris HR, Dell A, Lee B, Baum LG., PLoS Pathog. 6(7), 2010
PMID: 20657665
Cathepsin S supports acid-independent infection by some reoviruses.
Golden JW, Bahe JA, Lucas WT, Nibert ML, Schiff LA., J. Biol. Chem. 279(10), 2003
PMID: 14670972
Comparative pathology of the diseases caused by Hendra and Nipah viruses.
Hooper P, Zaki S, Daniels P, Middleton D., Microbes Infect. 3(4), 2001
PMID: 11334749
Genetic and pharmacologic alteration of cathepsin expression influences reovirus pathogenesis.
Johnson EM, Doyle JD, Wetzel JD, McClung RP, Katunuma N, Chappell JD, Washington MK, Dermody TS., J. Virol. 83(19), 2009
PMID: 19640986
Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions.
Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K., BMC Biochem. 10(), 2009
PMID: 19772638
Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis.
Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D., Cancer Cell 5(5), 2004
PMID: 15144952
Different functional share of individual lysosomal cathepsins in normal and pathological conditions.
Katunuma N, Kakegawa H, Matsunaga Y, Nikawa T, Kominami E., Agents Actions Suppl. 42(), 1993
PMID: 8356925
Proteinases 1: lysosomal cysteine proteinases.
Kirschke H, Barrett AJ, Rawlings ND., Protein Profile 2(14), 1995
PMID: 8771190
Host cell proteases controlling virus pathogenicity.
Klenk HD, Garten W., Trends Microbiol. 2(2), 1994
PMID: 8162439
Recycling pathways of glucosylceramide in BHK cells: distinct involvement of early and late endosomes.
Kok JW, Hoekstra K, Eskelinen S, Hoekstra D., J. Cell. Sci. 103 ( Pt 4)(), 1992
PMID: 1487494
Distribution of cathepsins B and H in rat tissues and peripheral blood cells.
Kominami E, Tsukahara T, Bando Y, Katunuma N., J. Biochem. 98(1), 1985
PMID: 3900059
Host cell cathepsins potentiate Moloney murine leukemia virus infection.
Kumar P, Nachagari D, Fields C, Franks J, Albritton LM., J. Virol. 81(19), 2007
PMID: 17634228
Toward computer-based cleavage site prediction of cysteine endopeptidases.
Lohmuller T, Wenzler D, Hagemann S, Kiess W, Peters C, Dandekar T, Reinheckel T., Biol. Chem. 384(6), 2003
PMID: 12887057
Recombinant measles virus requiring an exogenous protease for activation of infectivity.
Maisner A, Mrkic B, Herrler G, Moll M, Billeter MA, Cattaneo R, Klenk HD., J. Gen. Virol. 81(Pt 2), 2000
PMID: 10644843
Polarized budding of measles virus is not determined by viral surface glycoproteins.
Maisner A, Klenk H, Herrler G., J. Virol. 72(6), 1998
PMID: 9573304
Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro.
Maisner A, Neufeld J, Weingartl H., Thromb. Haemost. 102(6), 2009
PMID: 19967130
Zaire Ebola virus entry into human dendritic cells is insensitive to cathepsin L inhibition.
Martinez O, Johnson J, Manicassamy B, Rong L, Olinger GG, Hensley LE, Basler CF., Cell. Microbiol. 12(2), 2009
PMID: 19775255
Lysosomal metabolism of proteins.
Mason RW., Subcell. Biochem. 27(), 1996
PMID: 8993161
Surface activation of pro-cathepsin L.
Mason RW, Massey SD., Biochem. Biophys. Res. Commun. 189(3), 1992
PMID: 1482371
Endocytic recycling.
Maxfield FR, McGraw TE., Nat. Rev. Mol. Cell Biol. 5(2), 2004
PMID: 15040445
Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site.
Moll M, Diederich S, Klenk HD, Czub M, Maisner A., J. Virol. 78(18), 2004
PMID: 15331703
EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus.
Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B., Nature 436(7049), 2005
PMID: 16007075
Comparative substrate specificity analysis of recombinant human cathepsin V and cathepsin L.
Puzer L, Cotrin SS, Alves MF, Egborge T, Araujo MS, Juliano MA, Juliano L, Bromme D, Carmona AK., Arch. Biochem. Biophys. 430(2), 2004
PMID: 15369827
A simple method of estimating fifty per cent endpoints
Reed LJ, Muench H., 1938
Specialized roles for cysteine cathepsins in health and disease.
Reiser J, Adair B, Reinheckel T., J. Clin. Invest. 120(10), 2010
PMID: 20921628
Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection.
Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K, Feldmann H., J. Virol. 85(15), 2011
PMID: 21593160
Epoxysuccinyl peptide-derived cathepsin B inhibitors: modulating membrane permeability by conjugation with the C-terminal heptapeptide segment of penetratin.
Schaschke N, Deluca D, Assfalg-Machleidt I, Hohneke C, Sommerhoff CP, Machleidt W., Biol. Chem. 383(5), 2002
PMID: 12108551
Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein.
Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J., J. Virol. 80(8), 2006
PMID: 16571833
Human cathepsin L rescues the neurodegeneration and lethality in cathepsin B/L double-deficient mice.
Sevenich L, Pennacchio LA, Peters C, Reinheckel T., Biol. Chem. 387(7), 2006
PMID: 16913838
Effect of cysteine proteinase inhibitors on murine B16 melanoma cell invasion in vitro.
Sever N, Filipic M, Brzin J, Lah TT., Biol. Chem. 383(5), 2002
PMID: 12108549
Cathepsin expression during skeletal development.
Soderstrom M, Salminen H, Glumoff V, Kirschke H, Aro H, Vuorio E., Biochim. Biophys. Acta 1446(1-2), 1999
PMID: 10395917
Functional properties of the fusion and attachment glycoproteins of Nipah virus.
Tamin A, Harcourt BH, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA., Virology 296(1), 2002
PMID: 12036330
Cathepsin S inhibitors as novel immunomodulators
Thurmond RL, Sun S, Karlsson L, Edwards JP., 2005
Acidic pH as a physiological regulator of human cathepsin L activity.
Turk B, Dolenc I, Lenarcic B, Krizaj I, Turk V, Bieth JG, Bjork I., Eur. J. Biochem. 259(3), 1999
PMID: 10092883
Human cathepsin B is a metastable enzyme stabilized by specific ionic interactions associated with the active site.
Turk B, Dolenc I, Zerovnik E, Turk D, Gubensek F, Turk V., Biochemistry 33(49), 1994
PMID: 7993907
Kinetics of the pH-induced inactivation of human cathepsin L.
Turk B, Dolenc I, Turk V, Bieth JG., Biochemistry 32(1), 1993
PMID: 7678196
Lysosomal cysteine proteases (cathepsins): promising drug targets.
Turk D, Guncar G., Acta Crystallogr. D Biol. Crystallogr. 59(Pt 2), 2003
PMID: 12554931
Hendra and nipah infection: pathology, models and potential therapies.
Vigant F, Lee B., Infect Disord Drug Targets 11(3), 2011
PMID: 21488828
Endocytosis of the Nipah virus glycoproteins.
Vogt C, Eickmann M, Diederich S, Moll M, Maisner A., J. Virol. 79(6), 2005
PMID: 15731282
Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis.
Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR; Nipah Virus Pathology Working Group., Am. J. Pathol. 161(6), 2002
PMID: 12466131
Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter.
Yasothornsrikul S, Greenbaum D, Medzihradszky KF, Toneff T, Bundey R, Miller R, Schilling B, Petermann I, Dehnert J, Logvinova A, Goldsmith P, Neveu JM, Lane WS, Gibson B, Reinheckel T, Peters C, Bogyo M, Hook V., Proc. Natl. Acad. Sci. U.S.A. 100(16), 2003
PMID: 12869695
Cathepsin L is required for ecotropic murine leukemia virus infection in NIH3T3 cells.
Yoshii H, Kamiyama H, Minematsu K, Goto K, Mizota T, Oishi K, Katunuma N, Yamamoto N, Kubo Y., Virology 394(2), 2009
PMID: 19781728
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22278224
PubMed | Europe PMC

Suchen in

Google Scholar