Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells

Scheibe R, Dietz K-J (2012)
Plant Cell & Environment 35(2): 202-216.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Scheibe, Renate; Dietz, Karl-JosefUniBi
Abstract / Bemerkung
Photosynthesis generates the energy carriers NADPH and ATP to be consumed in assimilatory processes. Continuous energy conversion and optimal use of the available light energy are only guaranteed when all reduction-oxidation (redox) processes are tightly controlled. A robust network links metabolism with regulation and signalling. Information on the redox situation is generated and transferred by various redox components that are parts of this network. Any imbalance in the network is sensed, and the information is transmitted in order to elicit a response at the various levels of regulation and in the different cellular compartments. Redox information within the chloroplast is derived from intersystem electron transport, the ferredoxin-NADP oxidoreductase (FNR)/NADPH branch of the redox network, the thioredoxin branch and from reactive oxygen species (ROS), resulting in a high diversity of responses that are able to adjust photosynthesis, as well as poising and antioxidant systems accordingly in each specific situation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a central step in CO(2) reduction and in carbohydrate oxidation involving both forms of energy, namely NAD(P)H and ATP, with its various isoforms that are located in plastids, cytosol and nucleus. GAPDH is used as an example to demonstrate complexity, flexibility and robustness of the regulatory redox network in plants. 2011 Blackwell Publishing Ltd.
Plant Cell & Environment
Page URI


Scheibe R, Dietz K-J. Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell & Environment. 2012;35(2):202-216.
Scheibe, R., & Dietz, K. - J. (2012). Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell & Environment, 35(2), 202-216. doi:10.1111/j.1365-3040.2011.02319.x
Scheibe, Renate, and Dietz, Karl-Josef. 2012. “Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells”. Plant Cell & Environment 35 (2): 202-216.
Scheibe, R., and Dietz, K. - J. (2012). Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell & Environment 35, 202-216.
Scheibe, R., & Dietz, K.-J., 2012. Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell & Environment, 35(2), p 202-216.
R. Scheibe and K.-J. Dietz, “Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells”, Plant Cell & Environment, vol. 35, 2012, pp. 202-216.
Scheibe, R., Dietz, K.-J.: Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell & Environment. 35, 202-216 (2012).
Scheibe, Renate, and Dietz, Karl-Josef. “Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells”. Plant Cell & Environment 35.2 (2012): 202-216.

43 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Malate valves: old shuttles with new perspectives.
Selinski J, Scheibe R., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29933514
Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress.
Jia T, Wang J, Chang W, Fan X, Sui X, Song F., Int J Mol Sci 20(3), 2019
PMID: 30759832
Photoelectrochemistry of Photosystem II in Vitro vs in Vivo.
Zhang JZ, Bombelli P, Sokol KP, Fantuzzi A, Rutherford AW, Howe CJ, Reisner E., J Am Chem Soc 140(1), 2018
PMID: 28915035
The role of ecotypic variation in driving worldwide colonization by a cosmopolitan plant.
Neuffer B, Wesse C, Voss I, Scheibe R., AoB Plants 10(1), 2018
PMID: 29479407
The physiological and genetic basis of combined drought and heat tolerance in wheat.
Tricker PJ, ElHabti A, Schmidt J, Fleury D., J Exp Bot 69(13), 2018
PMID: 29562265
Cytosolic GAPDH as a redox-dependent regulator of energy metabolism.
Schneider M, Knuesting J, Birkholz O, Heinisch JJ, Scheibe R., BMC Plant Biol 18(1), 2018
PMID: 30189844
Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability.
Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T, Fernie AR, Bauwe H, Weber APM., Mol Plant 10(1), 2017
PMID: 27702693
Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins.
Mellor SB, Vavitsas K, Nielsen AZ, Jensen PE., Photosynth Res 134(3), 2017
PMID: 28285375
Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells.
Scherzer S, Shabala L, Hedrich B, Fromm J, Bauer H, Munz E, Jakob P, Al-Rascheid KAS, Kreuzer I, Becker D, Eiblmeier M, Rennenberg H, Shabala S, Bennett M, Neher E, Hedrich R., Proc Natl Acad Sci U S A 114(18), 2017
PMID: 28416693
Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis.
Woehle C, Dagan T, Landan G, Vardi A, Rosenwasser S., Nat Plants 3(), 2017
PMID: 28504699
Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism.
Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM., Nat Commun 8(1), 2017
PMID: 28663550
Redox regulation at the site of primary growth: auxin, cytokinin and ROS crosstalk.
Tognetti VB, Bielach A, Hrtyan M., Plant Cell Environ 40(11), 2017
PMID: 28708264
Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road.
Sewelam N, Kazan K, Schenk PM., Front Plant Sci 7(), 2016
PMID: 26941757
Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1.
Samuilov S, Lang F, Djukic M, Djunisijevic-Bojovic D, Rennenberg H., Environ Pollut 216(), 2016
PMID: 27396669
Metabolite transport and associated sugar signalling systems underpinning source/sink interactions.
Griffiths CA, Paul MJ, Foyer CH., Biochim Biophys Acta 1857(10), 2016
PMID: 27487250
Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.
Xu W, Lv H, Zhao M, Li Y, Qi Y, Peng Z, Xia G, Wang M., Sci Rep 6(), 2016
PMID: 27562633
Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance.
Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT., Plant Physiol 172(3), 2016
PMID: 27634426
Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria.
Daloso DM, Müller K, Obata T, Florian A, Tohge T, Bottcher A, Riondet C, Bariat L, Carrari F, Nunes-Nesi A, Buchanan BB, Reichheld JP, Araújo WL, Fernie AR., Proc Natl Acad Sci U S A 112(11), 2015
PMID: 25646482
TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis.
Vojta L, Carić D, Cesar V, Antunović Dunić J, Lepeduš H, Kveder M, Fulgosi H., Sci Rep 5(), 2015
PMID: 26041075
Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.
Kozuleva M, Klenina I, Mysin I, Kirilyuk I, Opanasenko V, Proskuryakov I, Ivanov B., Free Radic Biol Med 89(), 2015
PMID: 26453925
Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests.
Henne M, König N, Triulzi T, Baroni S, Forlani F, Scheibe R, Papenbrock J., FEBS Open Bio 5(), 2015
PMID: 26605137
Redox regulation of Arabidopsis mitochondrial citrate synthase.
Schmidtmann E, König AC, Orwat A, Leister D, Hartl M, Finkemeier I., Mol Plant 7(1), 2014
PMID: 24198232
Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis.
Beeler S, Liu HC, Stadler M, Schreier T, Eicke S, Lue WL, Truernit E, Zeeman SC, Chen J, Kötting O., Plant Physiol 164(3), 2014
PMID: 24453164
Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment.
Rosenwasser S, Graff van Creveld S, Schatz D, Malitsky S, Tzfadia O, Aharoni A, Levin Y, Gabashvili A, Feldmesser E, Vardi A., Proc Natl Acad Sci U S A 111(7), 2014
PMID: 24550302
Putative role of the malate valve enzyme NADP-malate dehydrogenase in H2O2 signalling in Arabidopsis.
Heyno E, Innocenti G, Lemaire SD, Issakidis-Bourguet E, Krieger-Liszkay A., Philos Trans R Soc Lond B Biol Sci 369(1640), 2014
PMID: 24591715
The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance.
Krasensky J, Broyart C, Rabanal FA, Jonak C., Antioxid Redox Signal 21(9), 2014
PMID: 24800789
Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L.
Laureau C, De Paepe R, Latouche G, Moreno-Chacón M, Finazzi G, Kuntz M, Cornic G, Streb P., Plant Cell Environ 36(7), 2013
PMID: 23301628
The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo.
Muthuramalingam M, Matros A, Scheibe R, Mock HP, Dietz KJ., Front Plant Sci 4(), 2013
PMID: 23516120
Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities.
Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B., BMC Plant Biol 13(), 2013
PMID: 23865417
Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii.
Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A., J Biol Chem 288(49), 2013
PMID: 24100040
Transfer of a Redox-Signal through the Cytosol by Redox-Dependent Microcompartmentation of Glycolytic Enzymes at Mitochondria and Actin Cytoskeleton.
Wojtera-Kwiczor J, Groß F, Leffers HM, Kang M, Schneider M, Scheibe R., Front Plant Sci 3(), 2012
PMID: 23316205

134 References

Daten bereitgestellt von Europe PubMed Central.

A two-step mechanism for the photosynthetic reduction of oxygen by ferredoxin.
Allen JF., Biochem. Biophys. Res. Commun. 66(1), 1975
PMID: 1164429
Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana
Arsova, The Plant Cell 2(), 2010
Regulation of NADP-dependent glyceraldehyde 3-phosphate dehydrogenase activity in spinach chloroplasts
Baalmann, Botanica Acta 107(), 1994
Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase.
Baalmann E, Backhausen JE, Rak C, Vetter S, Scheibe R., Arch. Biochem. Biophys. 324(2), 1995
PMID: 8554310
Influence of the photoperiod on redox regulation and stress responses in Arabidopsis thaliana L. (Heynh.) plants under long- and short-day conditions.
Becker B, Holtgrefe S, Jung S, Wunrau C, Kandlbinder A, Baier M, Dietz KJ, Backhausen JE, Scheibe R., Planta 224(2), 2006
PMID: 16435132
A novel, non-redox-regulated NAD-dependent malate dehydrogenase from chloroplasts of Arabidopsis thaliana L.
Berkemeyer M, Scheibe R, Ocheretina O., J. Biol. Chem. 273(43), 1998
PMID: 9774405
A metabolic enzyme doing double duty as a transcription factor.
Bhardwaj A, Wilkinson MF., Bioessays 27(5), 2005
PMID: 15832388
Regulation of plant light harvesting by thermal dissipation of excess energy.
de Bianchi S, Ballottari M, Dall'osto L, Bassi R., Biochem. Soc. Trans. 38(2), 2010
PMID: 20298238
Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis.
Brautigam K, Dietzel L, Kleine T, Stroher E, Wormuth D, Dietz KJ, Radke D, Wirtz M, Hell R, Dormann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T., Plant Cell 21(9), 2009
PMID: 19737978
Hypothesis: A binary redox control mode as universal regulator of photosynthetic light acclimation.
Brautigam K, Dietzel L, Pfannschmidt T., Plant Signal Behav 5(1), 2010
PMID: 20592819
Redox regulation: a broadening horizon.
Buchanan BB, Balmer Y., Annu Rev Plant Biol 56(), 2005
PMID: 15862094
Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis.
op den Camp RG, Przybyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner I, Nater M, Apel K., Plant Cell 15(10), 2003
PMID: 14508004
The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity.
Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M., J. Biol. Chem. 278(26), 2003
PMID: 12707279
A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.
DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D., Cell 132(2), 2008
PMID: 18243102
Protein S-glutathionylation: a regulatory device from bacteria to humans.
Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A., Trends Biochem. Sci. 34(2), 2009
PMID: 19135374
Peroxiredoxins in plants and cyanobacteria
Dietz, Antioxidants & Redox Signalling (), 2011
Light and CO2 limitation of photosynthesis and states of the reactions regenerating ribulose 1,5-bisphosphate or reducing 3-phosphoglycerate
Dietz, Biochimica et Biophysica Acta 848(), 1986
Redox regulation in oxigenic photosynthesis
Dietz, Progress in Botany 63(), 2002
Hubs and bottlenecks in plant molecular signalling networks.
Dietz KJ, Jacquot JP, Harris G., New Phytol. 188(4), 2010
PMID: 20958306
Stress-induced protein S-glutathionylation in Arabidopsis.
Dixon DP, Skipsey M, Grundy NM, Edwards R., Plant Physiol. 138(4), 2005
PMID: 16055689
Redox equilibria between the regulatory thiols of light/dark-modulated chloroplast enzymes and dithiothreitol: fine-tuning by metabolites.
Faske M, Holtgrefe S, Ocheretina O, Meister M, Backhausen JE, Scheibe R., Biochim. Biophys. Acta 1247(1), 1995
PMID: 7873583
Retrograde plastid redox signals in the expression of nuclear genes for chloroplast proteins of Arabidopsis thaliana.
Fey V, Wagner R, Brautigam K, Wirtz M, Hell R, Dietzmann A, Leister D, Oelmuller R, Pfannschmidt T., J. Biol. Chem. 280(7), 2004
PMID: 15561727
Quantitative evaluation of the rate of 3-phosphoglycerate reduction in chloroplasts
Fridlyand, Plant & Cell Physiology 38(), 1997
Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells.
Giege P, Heazlewood JL, Roessner-Tunali U, Millar AH, Fernie AR, Leaver CJ, Sweetlove LJ., Plant Cell 15(9), 2003
PMID: 12953116
Redox control systems in the nucleus: mechanisms and functions.
Go YM, Jones DP., Antioxid. Redox Signal. 13(4), 2010
PMID: 20210649
Feedback regulation of photosynthetic electron transport by NADP(H) redox poise.
Hald S, Nandha B, Gallois P, Johnson GN., Biochim. Biophys. Acta 1777(5), 2008
PMID: 18371296
Transcriptional regulation of NADP-dependent malate dehydrogenase: comparative genetics and identification of DNA-binding proteins.
Hameister S, Becker B, Holtgrefe S, Strodtkotter I, Linke V, Backhausen JE, Scheibe R., J. Mol. Evol. 65(4), 2007
PMID: 17925997
A post genomic characterization of Arabidopsis ferredoxins.
Hanke GT, Kimata-Ariga Y, Taniguchi I, Hase T., Plant Physiol. 134(1), 2003
PMID: 14684843
Use of transgenic plants to uncover strategies for maintenance of redox homeostasis during photosynthesis
Hanke, Advances in Botanical Research 52(), 2009
Nitric oxide-GAPDH-Siah: a novel cell death cascade.
Hara MR, Snyder SH., Cell. Mol. Neurobiol. 26(4-6), 2006
PMID: 16633896
Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis.
Heber UW, Santarius KA., Biochim. Biophys. Acta 109(2), 1965
PMID: 4379647
Assimilatory power as a driving force in photosynthesis
Heber, Biochimica et Biophysica Acta 852(), 1986
The redox imbalanced mutants of Arabidopsis differentiate signaling pathways for redox regulation of chloroplast antioxidant enzymes.
Heiber I, Stroher E, Raatz B, Busse I, Kahmann U, Bevan MW, Dietz KJ, Baier M., Plant Physiol. 143(4), 2007
PMID: 17337533
Binary reducing equivalent pathways using NADPH-thioredoxin reductase and ferredoxin-thioredoxin reductase in the cyanobacterium Synechocystis sp. strain PCC 6803.
Hishiya S, Hatakeyama W, Mizota Y, Hosoya-Matsuda N, Motohashi K, Ikeuchi M, Hisabori T., Plant Cell Physiol. 49(1), 2007
PMID: 18003670
Cytoskeleton-associated, carbohydrate-metabolizing enzymes in maize identified by yeast two-hybrid screening
Holtgraewe, Physiologia Plantarum 125(), 2005
Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications
Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, Wojtera J, Lindermayr C, Scheibe R., Physiol Plant 133(2), 2008
PMID: IND44051579
Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis.
Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ., Plant Physiol. 131(1), 2003
PMID: 12529539
Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S, Lee KJ., Biochem. J. 423(2), 2009
PMID: 19650766
Molecular democracy: who shares the controls?
Kacser, Biochemical Socíety Transactions 7(), 1979
Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses.
Kangasjarvi S, Lepisto A, Hannikainen K, Piippo M, Luomala EM, Aro EM, Rintamaki E., Biochem. J. 412(2), 2008
PMID: 18318659
Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor.
Khandelwal A, Elvitigala T, Ghosh B, Quatrano RS., Plant Physiol. 148(4), 2008
PMID: 18829981
Multifaceted roles of glycolytic enzymes.
Kim JW, Dang CV., Trends Biochem. Sci. 30(3), 2005
PMID: 15752986
No single way to understand singlet oxygen signalling in plants.
Kim C, Meskauskiene R, Apel K, Laloi C., EMBO Rep. 9(5), 2008
PMID: 18451767
The importance of energy balance in improving photosynthetic productivity.
Kramer DM, Evans JR., Plant Physiol. 155(1), 2010
PMID: 21078862
Mitochondrial oxidative phosphorylation participating in photosynthetic metabolism in a leaf cell
Krömer, FEBS Letters 226(), 1988
Oscillations in photosynthesis are initiated and supported by imbalances in the supply of ATP and NADPH to the Calvin cycle.
Laisk A, Siebke K, Gerst U, Eichelmann H, Oja V, Heber U., Planta 185(4), 1991
PMID: 24186534
Rates and roles of cyclic and alternative electron flow in potato leaves.
Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R., Plant Cell Physiol. 48(11), 2007
PMID: 17938131
Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana.
Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K., Proc. Natl. Acad. Sci. U.S.A. 104(2), 2006
PMID: 17197417
Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis.
Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ., Plant J. 45(6), 2006
PMID: 16507087
Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis.
Lepisto A, Kangasjarvi S, Luomala EM, Brader G, Sipari N, Keranen M, Keinanen M, Rintamaki E., Plant Physiol. 149(3), 2009
PMID: 19151130
Silencing of SlFTR-c, the catalytic subunit of ferredoxin:thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants.
Lim CJ, Kim WB, Lee BS, Lee HY, Kwon TH, Park JM, Kwon SY., Biochem. Biophys. Res. Commun. 399(4), 2010
PMID: 20705057
Proteomic identification of S-nitrosylated proteins in Arabidopsis.
Lindermayr C, Saalbach G, Durner J., Plant Physiol. 137(3), 2005
PMID: 15734904
Photosynthetic metabolism of C3 plants shows highly cooperative regulation under changing environments: a systems biological analysis.
Luo R, Wei H, Ye L, Wang K, Chen F, Luo L, Liu L, Li Y, Crabbe MJ, Jin L, Li Y, Zhong Y., Proc. Natl. Acad. Sci. U.S.A. 106(3), 2009
PMID: 19129487
Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress.
Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S., Plant Cell Physiol. 51(2), 2009
PMID: 20007290
Dynamics of photosynthetic membrane composition and function
Melis, Biochimica et Biophysica Acta 1058(), 1991
Thioredoxins and glutaredoxins: unifying elements in redox biology.
Meyer Y, Buchanan BB, Vignols F, Reichheld JP., Annu. Rev. Genet. 43(), 2009
PMID: 19691428
Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models.
Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G., J. Exp. Bot. 61(15), 2010
PMID: 20876333
NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts.
Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P., Proc. Natl. Acad. Sci. U.S.A. 106(24), 2009
PMID: 19470473

Miginiac-Maslow, 1984
Thioredoxin targets in plants: the first 30 years.
Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB., J Proteomics 72(3), 2008
PMID: 19135183
NO synthesis and signaling in plants - where do we stand
Moreau M, Lindermayr C, Durner J, Klessig DF., Physiol Plant 138(4), 2010
PMID: IND44341607
Reactive electrophilic oxylipins: pattern recognition and signalling.
Mueller MJ, Berger S., Phytochemistry 70(13-14), 2009
PMID: 19555983
Oxidative stress: antagonistic signaling for acclimation or cell death?
Mullineaux PM, Baker NR., Plant Physiol. 154(2), 2010
PMID: 20921177
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription.
Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C., Plant J. 50(1), 2007
PMID: 17397508
A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity?
Noctor, Journal of Experimental Botany 49(), 1998
Redox control of protein trafficking.
Nose K., Antioxid. Redox Signal. 7(3-4), 2005
PMID: 15706078
Redox regulation and overreduction control in the photosynthesizing cell: complexity in redox regulatory networks.
Oelze ML, Kandlbinder A, Dietz KJ., Biochim. Biophys. Acta 1780(11), 2008
PMID: 18439433
Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage.
Palatnik JF, Tognetti VB, Poli HO, Rodriguez RE, Blanco N, Gattuso M, Hajirezaei MR, Sonnewald U, Valle EM, Carrillo N., Plant J. 35(3), 2003
PMID: 12887584
Orchestrating redox signaling networks through regulatory cysteine switches.
Paulsen CE, Carroll KS., ACS Chem. Biol. 5(1), 2010
PMID: 19957967
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ., Plant Cell 18(9), 2006
PMID: 16891402
Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation.
Pesaresi P, Hertle A, Pribil M, Kleine T, Wagner R, Strissel H, Ihnatowicz A, Bonardi V, Scharfenberg M, Schneider A, Pfannschmidt T, Leister D., Plant Cell 21(8), 2009
PMID: 19706797
Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38
Pesaresi, Biochimica et Biophysica Acta (), 2010
Photosynthetic control of chloroplast gene expression
Pfannschmidt, Nature 397(), 1999
Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding.
Pfannschmidt T, Brautigam K, Wagner R, Dietzel L, Schroter Y, Steiner S, Nykytenko A., Ann. Bot. 103(4), 2008
PMID: 18492734
Plastid signalling to the nucleus and beyond.
Pogson BJ, Woo NS, Forster B, Small ID., Trends Plant Sci. 13(11), 2008
PMID: 18838332
The cellular redox state in plant stress biology--a charging concept.
Potters G, Horemans N, Jansen MA., Plant Physiol. Biochem. 48(5), 2010
PMID: 20137959
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, Gonzalez M, Cejudo FJ., J. Exp. Bot. 61(14), 2010
PMID: 20616155
Activation properties of the redox-modulated chloroplast enzymes glyceraldehyde 3-phosphate dehydrogenase and fructose 1,6-bisphosphatase
Reichert, Physiologia Plantarum 110(), 2000
Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses.
Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M., Plant J. 41(1), 2005
PMID: 15610347
Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress.
Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N., Plant Physiol. 143(2), 2006
PMID: 17189326
Malate valves to balance cellular energy supply.
Scheibe R., Physiol Plant 120(1), 2004
PMID: 15032873
Comparison of NADP-malate dehydrogenase activation, QA reduction and O2 evolution in spinach leaves
Scheibe, Plant Physiology and Biochemistry 26(), 1988
C-terminal truncation of spinach chloroplast NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase prevents inactivation and reaggregation.
Scheibe R, Baalmann E, Backhausen JE, Rak C, Vetter S., Biochim. Biophys. Acta 1296(2), 1996
PMID: 8814230
Co-existence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts.
Scheibe R, Wedel N, Vetter S, Emmerlich V, Sauermann SM., Eur. J. Biochem. 269(22), 2002
PMID: 12423361
Strategies to maintain redox homeostasis during photosynthesis under changing conditions.
Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S., J. Exp. Bot. 56(416), 2005
PMID: 15851411
The ferredoxin docking site of photosystem I.
Setif P, Fischer N, Lagoutte B, Bottin H, Rochaix JD., Biochim. Biophys. Acta 1555(1-3), 2002
PMID: 12206916
The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes
Shaikhali, BMC Plant Biology 8(), 2008
Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry.
Shimizu M, Kato H, Ogawa T, Kurachi A, Nakagawa Y, Kobayashi H., Proc. Natl. Acad. Sci. U.S.A. 107(23), 2010
PMID: 20498041
New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells
Sirover, Journal of Cell Biochemistry 95(), 2005
The redox switch: dynamic regulation of protein function by cysteine modifications
Spadaro, Physiologia Plantarum 138(), 2009
Formation of hydrogen peroxide and oxygen dependence of photosynthetic CO2 assimilation by intact chloroplasts
Steiger, Plant & Cell Physiology 22(), 1981
Induction of the AOX1D isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with antimycin A.
Strodtkotter I, Padmasree K, Dinakar C, Speth B, Niazi PS, Wojtera J, Voss I, Do PT, Nunes-Nesi A, Fernie AR, Linke V, Raghavendra AS, Scheibe R., Mol Plant 2(2), 2009
PMID: 19825614
The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes.
Thon M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA., Nucleic Acids Res. 38(4), 2009
PMID: 19965775
Singlet oxygen in plants: production, detoxification and signaling.
Triantaphylides C, Havaux M., Trends Plant Sci. 14(4), 2009
PMID: 19303348
Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes.
Usadel B, Blasing OE, Gibon Y, Retzlaff K, Hohne M, Gunther M, Stitt M., Plant Physiol. 146(4), 2008
PMID: 18305208
Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana
Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R., Physiol Plant 133(3), 2008
PMID: IND44069762
FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I.
Voss I, Goss T, Murozuka E, Altmann B, McLean KJ, Rigby SE, Munro AW, Scheibe R, Hase T, Hanke GT., J. Biol. Chem. 286(1), 2010
PMID: 20966083
Simultaneous measurement of oscillations in oxygen evolution and chlorophyll a fluorescence in leaf pieces.
Walker DA, Sivak MN, Prinsley RT, Cheesbrough JK., Plant Physiol. 73(3), 1983
PMID: 16663255
Regulation of gene expression by photosynthetic signals triggered through modified CO2 availability
Wormuth, BMC Plant Biology 6(), 2006
Disulfides as redox switches: from molecular mechanisms to functional significance.
Wouters MA, Fan SW, Haworth NL., Antioxid. Redox Signal. 12(1), 2010
PMID: 19634988
Scaffolds: interaction platforms for cellular signalling circuits.
Zeke A, Lukacs M, Lim WA, Remenyi A., Trends Cell Biol. 19(8), 2009
PMID: 19651513

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 21410714
PubMed | Europe PMC

Suchen in

Google Scholar