Plant nanotoxicology

Dietz K-J, Herth S (2011)
Trends in plant science 16(11): 582-589.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The anthropogenic release of nanoparticles (NPs) to the environment poses a potential hazard to human health and life. The interplay between NPs and biological processes is receiving increasing attention. Plants expose huge interfaces to the air and soil environment. Thus, NPs are adsorbed to the plant surfaces, taken up through nano- or micrometer-scale openings of plants and are translocated within the plant body. Persistent NPs associated with plants enter the human food chain. In this Opinion, we document the occurrence and character of NPs in the environment and evaluate the need for future research on toxicological effects. Plant nanotoxicology is introduced as a discipline that explores the effects and toxicity mechanisms of NPs in plants, including transport, surface interactions and material-specific responses. Copyright A 2011 Elsevier Ltd. All rights reserved.
Erscheinungsjahr
2011
Zeitschriftentitel
Trends in plant science
Band
16
Ausgabe
11
Seite(n)
582-589
ISSN
1360-1385
Page URI
https://pub.uni-bielefeld.de/record/2442429

Zitieren

Dietz K-J, Herth S. Plant nanotoxicology. Trends in plant science. 2011;16(11):582-589.
Dietz, K. - J., & Herth, S. (2011). Plant nanotoxicology. Trends in plant science, 16(11), 582-589. https://doi.org/10.1016/j.tplants.2011.08.003
Dietz, Karl-Josef, and Herth, Simone. 2011. “Plant nanotoxicology”. Trends in plant science 16 (11): 582-589.
Dietz, K. - J., and Herth, S. (2011). Plant nanotoxicology. Trends in plant science 16, 582-589.
Dietz, K.-J., & Herth, S., 2011. Plant nanotoxicology. Trends in plant science, 16(11), p 582-589.
K.-J. Dietz and S. Herth, “Plant nanotoxicology”, Trends in plant science, vol. 16, 2011, pp. 582-589.
Dietz, K.-J., Herth, S.: Plant nanotoxicology. Trends in plant science. 16, 582-589 (2011).
Dietz, Karl-Josef, and Herth, Simone. “Plant nanotoxicology”. Trends in plant science 16.11 (2011): 582-589.

71 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Orthophosphate modulates the phytotoxicity of nano-ZnO to Lemna minor (L.).
Chen X, O'Halloran J, Jansen MAK., Environ Technol 40(18), 2019
PMID: 29471740
Absorption and Bio-Transformation of Selenium Nanoparticles by Wheat Seedlings (Triticum aestivum L.).
Hu T, Li H, Li J, Zhao G, Wu W, Liu L, Wang Q, Guo Y., Front Plant Sci 9(), 2018
PMID: 29868060
Regulation of Mitochondrial and Cytosol Antioxidant Systems of Fenugreek (Trigonella foenum graecum L.) Exposed to Nanosized Titanium Dioxide.
Missaoui T, Smiri M, Chemingui H, Jbira E, Hafiane A., Bull Environ Contam Toxicol 101(3), 2018
PMID: 30099613
Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects.
Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H., Plant Physiol Biochem 110(), 2017
PMID: 27137632
Role of nanomaterials in plants under challenging environments.
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH., Plant Physiol Biochem 110(), 2017
PMID: 27269705
Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.
Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL., Plant Physiol Biochem 110(), 2017
PMID: 27289187
Physiological and biochemical response of plants to engineered NMs: Implications on future design.
de la Rosa G, García-Castañeda C, Vázquez-Núñez E, Alonso-Castro ÁJ, Basurto-Islas G, Mendoza Á, Cruz-Jiménez G, Molina C., Plant Physiol Biochem 110(), 2017
PMID: 27328789
An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity.
Tripathi DK, Shweta, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK., Plant Physiol Biochem 110(), 2017
PMID: 27601425
Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles?
Jain N, Bhargava A, Pareek V, Sayeed Akhtar M, Panwar J., Ecotoxicology 26(2), 2017
PMID: 28083774
Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review.
Tripathi DK, Tripathi A, Shweta, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK., Front Microbiol 8(), 2017
PMID: 28184215
Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate-Glutathione Cycle.
Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, Pandey AC, Sahi S, Chauhan DK., Front Plant Sci 8(), 2017
PMID: 28220127
Toxic effect of cadmium adsorbed by different sizes of nano-hydroxyapatite on the growth of rice seedlings.
Huang Y, Qiu W, Yu Z, Song Z., Environ Toxicol Pharmacol 52(), 2017
PMID: 28363128
Integrated Approach of Agri-nanotechnology: Challenges and Future Trends.
Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB., Front Plant Sci 8(), 2017
PMID: 28421100
Titanium as a Beneficial Element for Crop Production.
Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D., Front Plant Sci 8(), 2017
PMID: 28487709
Nanoparticles based on essential metals and their phytotoxicity.
Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V., J Nanobiotechnology 15(1), 2017
PMID: 28446250
A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials.
Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM., Crit Rev Toxicol 47(9), 2017
PMID: 28661217
Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter.
Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH, Karimzadeh F, Khazaei HR, Khorassani R., Ecotoxicol Environ Saf 144(), 2017
PMID: 28688355
Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review.
Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M., Front Chem 5(), 2017
PMID: 29075626
Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress.
Zuo Z, Sun L, Wang T, Miao P, Zhu X, Liu S, Song F, Mao H, Li X., Molecules 22(10), 2017
PMID: 29057793
Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review.
Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR., Nanotoxicology 10(3), 2016
PMID: 26067571
Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure.
Martínez-Fernández D, Barroso D, Komárek M., Environ Sci Pollut Res Int 23(2), 2016
PMID: 26396006
Insights into the proteomic response of soybean towards Al₂O₃, ZnO, and Ag nanoparticles stress.
Hossain Z, Mustafa G, Sakata K, Komatsu S., J Hazard Mater 304(), 2016
PMID: 26561753
Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.
Van Koetsem F, Xiao Y, Luo Z, Du Laing G., Environ Sci Pollut Res Int 23(6), 2016
PMID: 26564182
Gold Nanomaterial Uptake from Soil Is Not Increased by Arbuscular Mycorrhizal Colonization of Solanum Lycopersicum (Tomato).
Judy JD, Kirby JK, McLaughlin MJ, Cavagnaro T, Bertsch PM., Nanomaterials (Basel) 6(4), 2016
PMID: 28335196
Nanotechnology: A New Opportunity in Plant Sciences.
Wang P, Lombi E, Zhao FJ, Kopittke PM., Trends Plant Sci 21(8), 2016
PMID: 27130471
Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress.
Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Li Z, Huang Y, Hu J., Environ Sci Pollut Res Int 23(19), 2016
PMID: 27438877
Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles.
Večeřová K, Večeřa Z, Dočekal B, Oravec M, Pompeiano A, Tříska J, Urban O., Environ Pollut 218(), 2016
PMID: 27503055
Engineered Gold Nanoparticles and Plant Adaptation Potential.
Siddiqi KS, Husen A., Nanoscale Res Lett 11(1), 2016
PMID: 27637892
Maghemite nanoparticles and ferrous sulfate for the stimulation of iron plaque formation and arsenic immobilization in Phragmites australis.
Pardo T, Martínez-Fernández D, de la Fuente C, Clemente R, Komárek M, Bernal MP., Environ Pollut 219(), 2016
PMID: 27814546
Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber.
Ma Y, Zhang P, Zhang Z, He X, Li Y, Zhang J, Zheng L, Chu S, Yang K, Zhao Y, Chai Z., Nanotoxicology 9(2), 2015
PMID: 24877678
TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.).
Raliya R, Biswas P, Tarafdar JC., Biotechnol Rep (Amst) 5(), 2015
PMID: 28626678
Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds.
Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH., Environ Sci Pollut Res Int 22(14), 2015
PMID: 25724800
Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants.
Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, Nowack B., Metallomics 7(3), 2015
PMID: 25634091
Comparative toxicity of copper nanoparticles across three Lemnaceae species.
Song L, Vijver MG, Peijnenburg WJ., Sci Total Environ 518-519(), 2015
PMID: 25765374
MITIGATION OF Cu(II) PHYTOTOXICITY TO RICE (ORYZA SATIVA) IN THE PRESENCE OF TiO₂ AND CeO₂ NANOPARTICLES COMBINED WITH HUMIC ACID.
Wang Y, Peng C, Fang H, Sun L, Zhang H, Feng J, Duan D, Liu T, Shi J., Environ Toxicol Chem 34(7), 2015
PMID: 25771918
Penetration and Toxicity of Nanomaterials in Higher Plants.
Chichiriccò G, Poma A., Nanomaterials (Basel) 5(2), 2015
PMID: 28347040
Phytotoxicity, Translocation, and Biotransformation of NaYF₄ Upconversion Nanoparticles in a Soybean Plant.
Yin W, Zhou L, Ma Y, Tian G, Zhao J, Yan L, Zheng X, Zhang P, Yu J, Gu Z, Zhao Y., Small 11(36), 2015
PMID: 26099115
Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles.
Peng C, Zhang H, Fang H, Xu C, Huang H, Wang Y, Sun L, Yuan X, Chen Y, Shi J., Environ Toxicol Chem 34(9), 2015
PMID: 25868010
Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic.
Wang P, Menzies NW, Lombi E, Sekine R, Blamey FP, Hernandez-Soriano MC, Cheng M, Kappen P, Peijnenburg WJ, Tang C, Kopittke PM., Nanotoxicology 9(8), 2015
PMID: 25686712
Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress.
Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H., Sci Rep 5(), 2015
PMID: 26419216
Plant Responses to Nanoparticle Stress.
Hossain Z, Mustafa G, Komatsu S., Int J Mol Sci 16(11), 2015
PMID: 26561803
Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T., Nanotoxicology 8(2), 2014
PMID: 23311584
Direct isolation of flavonoids from plants using ultra-small anatase TiO₂ nanoparticles.
Kurepa J, Nakabayashi R, Paunesku T, Suzuki M, Saito K, Woloschak GE, Smalle JA., Plant J 77(3), 2014
PMID: 24147867
Cytokinin signaling stabilizes the response activator ARR1.
Kurepa J, Li Y, Smalle JA., Plant J 78(1), 2014
PMID: 24617630
Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure.
Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Ouerdane L, Legros S, Sarret G., J Hazard Mater 273(), 2014
PMID: 24709478
Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth.
Thuesombat P, Hannongbua S, Akasit S, Chadchawan S., Ecotoxicol Environ Saf 104(), 2014
PMID: 24726943
Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.
Taylor AF, Rylott EL, Anderson CW, Bruce NC., PLoS One 9(4), 2014
PMID: 24736522
Large scale molecular simulations of nanotoxicity.
Jimenez-Cruz CA, Kang SG, Zhou R., Wiley Interdiscip Rev Syst Biol Med 6(4), 2014
PMID: 24894909
Uptake and translocation of Ti from nanoparticles in crops and wetland plants.
Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN., Int J Phytoremediation 15(2), 2013
PMID: 23487992
Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death.
Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J., J Hazard Mater 250-251(), 2013
PMID: 23474406
Toxicity of engineered nanoparticles in the environment.
Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL., Anal Chem 85(6), 2013
PMID: 23427995
Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings.
Shaw AK, Hossain Z., Chemosphere 93(6), 2013
PMID: 23791109
Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza.
Jiang HS, Li M, Chang FY, Li W, Yin LY., Environ Toxicol Chem 31(8), 2012
PMID: 22639346
Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation.
Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY, Gardea-Torresdey JL., ACS Nano 6(11), 2012
PMID: 23050848
Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants.
Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES., PLoS One 7(10), 2012
PMID: 23091638
Water soluble carbon nano-onions from wood wool as growth promoters for gram plants.
Sonkar SK, Roy M, Babar DG, Sarkar S., Nanoscale 4(24), 2012
PMID: 23099536

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21906987
PubMed | Europe PMC

Suchen in

Google Scholar