THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES

Dietz K-J, SCHREIBER U, HEBER U (1985)
Planta 166(2): 219-226.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dietz, Karl-JosefUniBi; SCHREIBER, U; HEBER, U
Erscheinungsjahr
1985
Zeitschriftentitel
Planta
Band
166
Ausgabe
2
Seite(n)
219-226
ISSN
0032-0935
eISSN
1432-2048
Page URI
https://pub.uni-bielefeld.de/record/2408228

Zitieren

Dietz K-J, SCHREIBER U, HEBER U. THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES. Planta. 1985;166(2):219-226.
Dietz, K. - J., SCHREIBER, U., & HEBER, U. (1985). THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES. Planta, 166(2), 219-226. https://doi.org/10.1007/BF00397352
Dietz, Karl-Josef, SCHREIBER, U, and HEBER, U. 1985. “THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES”. Planta 166 (2): 219-226.
Dietz, K. - J., SCHREIBER, U., and HEBER, U. (1985). THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES. Planta 166, 219-226.
Dietz, K.-J., SCHREIBER, U., & HEBER, U., 1985. THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES. Planta, 166(2), p 219-226.
K.-J. Dietz, U. SCHREIBER, and U. HEBER, “THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES”, Planta, vol. 166, 1985, pp. 219-226.
Dietz, K.-J., SCHREIBER, U., HEBER, U.: THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES. Planta. 166, 219-226 (1985).
Dietz, Karl-Josef, SCHREIBER, U, and HEBER, U. “THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES”. Planta 166.2 (1985): 219-226.

55 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Photosynthetic acclimation, vernalization, crop productivity and 'the grand design of photosynthesis'.
Hüner NPA, Dahal K, Bode R, Kurepin LV, Ivanov AG., J Plant Physiol 203(), 2016
PMID: 27185597
A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO₂.
Morfopoulos C, Sperlich D, Peñuelas J, Filella I, Llusià J, Medlyn BE, Niinemets Ü, Possell M, Sun Z, Prentice IC., New Phytol 203(1), 2014
PMID: 24661143
Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid.
Hüner NP, Dahal K, Kurepin LV, Savitch L, Singh J, Ivanov AG, Kane K, Sarhan F., Front Chem 2(), 2014
PMID: 24860799
Improving the accuracy of chlorophyll fluorescence measurements.
Harbinson J., Plant Cell Environ 36(10), 2013
PMID: 23560881
Understanding chloroplast biogenesis using second-site suppressors of immutans and var2.
Putarjunan A, Liu X, Nolan T, Yu F, Rodermel S., Photosynth Res 116(2-3), 2013
PMID: 23703455
Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity.
Loriaux SD, Avenson TJ, Welles JM, McDermitt DK, Eckles RD, Riensche B, Genty B., Plant Cell Environ 36(10), 2013
PMID: 23586649
Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker.
Kalaji HM, Goltsev V, Bosa K, Allakhverdiev SI, Strasser RJ, Govindjee., Photosynth Res 114(2), 2012
PMID: 23065335
Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O(2) at photosystem I: a symptom of plant diabetes.
Saito R, Yamamoto H, Makino A, Sugimoto T, Miyake C., Plant Cell Environ 34(9), 2011
PMID: 21535016
Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon
Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokota A., Physiol Plant 142(3), 2011
PMID: IND44589859
Chlorophyll fluorescence: a probe of photosynthesis in vivo.
Baker NR., Annu Rev Plant Biol 59(), 2008
PMID: 18444897
Light- and CO2-saturated photosynthesis: enhancement by oxygen.
Viil J, Ivanova H, Pärnik T., Photosynth Res 88(3), 2006
PMID: 16763880
Energy balance, organellar redox status, and acclimation to environmental stress
Wilson KE, Ivanov AG, Oquist G, Grodzinski B, Sarhan F, Huner NPA., Can J Bot 84(9), 2006
PMID: IND43864191
Low temperature enhances photosynthetic down-regulation in French bean (Phaseolus vulgaris L.) plants.
Tsonev T, Velikova V, Georgieva K, Hyde PF, Jones HG., Ann Bot 91(3), 2003
PMID: 12547687
Cyclic flow of electrons within PSII in thylakoid membranes.
Miyake C, Yokota A., Plant Cell Physiol 42(5), 2001
PMID: 11382817
Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa).
Matthijs HC, Balke H, van Hes UM, Kroon BM, Mur LR, Binot RA., Biotechnol Bioeng 50(1), 1996
PMID: 18626903
End product feedback effects on photosynthetic electron transport.
Pammenter NW, Loreto F, Sharkey TD., Photosynth Res 35(1), 1993
PMID: 24318616
Photosystem II reaction centres stay intact during low temperature photoinhibition.
Ottander C, Hundal T, Andersson B, Huner NP, Oquist G., Photosynth Res 35(2), 1993
PMID: 24318686
The role of calcium in the pH-dependent control of Photosystem II.
Krieger A, Weis E., Photosynth Res 37(2), 1993
PMID: 24317708
Analysis of oxygen evolution during photosynthetic induction and in multiple-turnover flashes in sunflower leaves.
Laisk A, Kiirats O, Oja V, Gerst U, Weis E, Heber U., Planta 186(3), 1992
PMID: 24186741
The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves.
Foyer C, Furbank R, Harbinson J, Horton P., Photosynth Res 25(2), 1990
PMID: 24420275
The use of chlorophyll fluorescence nomenclature in plant stress physiology.
van Kooten O, Snel JF., Photosynth Res 25(3), 1990
PMID: 24420345
The relationship between CO2 assimilation and electron transport in leaves.
Harbinson J, Genty B, Baker NR., Photosynth Res 25(3), 1990
PMID: 24420351
The use of chlorophyll fluorescence as a screening method for cold tolerance in maize.
Schapendonk AH, Dolstra O, van Kooten O., Photosynth Res 20(3), 1989
PMID: 24424436

23 References

Daten bereitgestellt von Europe PubMed Central.


Boardman, Annu. Rev. Plant Physiol. 28(), 1977

M, 1984

Chow, Biochim. Biophys. Acta 638(), 1981

Crofts, Biochim. Biophys. Acta 726(), 1983

Dietz, Biochim. Biophys. Acta 767(), 1984

Dietz, Biochim. Biophys. Acta 767(), 1984

Edwards, 1983

Heber, Biochim. Biophys. Acta 679(), 1982

Heldt, 1981

Joliot, C.R. Acad. Sci. Ser. D. 258(), 1964

Kobayashi, Biochim. Biophys. Acta 682(), 1982

Köster, Biochim. Biophys. Acta 680(), 1982

Krause, Biochim. Biophys. Acta 679(), 1982

Quick, Proc. R. Soc. London 220(), 1984

AUTHOR UNKNOWN, 0
Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus.
Schreiber U, Vidaver W., Biochim. Biophys. Acta 368(1), 1974
PMID: 4423963
Analysis of temperature-jump chlorophyll fluorescence induction in plants.
Schreiber U, Colbow K, Vidaver W., Biochim. Biophys. Acta 423(2), 1976
PMID: 1247610
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24241436
PubMed | Europe PMC

Suchen in

Google Scholar