Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L

Hellwege EM, Dietz K-J, Hartung W (1996)
Planta 198(3): 423-432.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Hellwege, E. M.; Dietz, Karl-JosefUniBi; Hartung, W.
Abstract / Bemerkung
The conversion of the submerged form of Riccia fluitans to the landform either by transfer to a moist solid surface or by treatment with abscisic acid (ABA), is accompanied by the formation of a set of new polypeptides and concomitant down-regulation of other polypeptides. Changes in gene expression were analyzed by two-dimensional separations of proteins and differential screening of a cDNA library. One of the landform-specific proteins might depend on the expression of the newly discovered Ric 1 gene. The deduced amino acid sequence of the isolated Ric 1 cDNA clone codes for a protein with a molecular mass of 30.1 kDa. This polypeptide possesses two amino acid sequences which are repeated five times each and it is largely hydrophilic with the exception of a hydrophobic carboxyl-terminal region. Under ABA treatment the expression of the Ric 1 mRNA had already reached its maximum after 1 h of incubation. Transferring submerged thalli onto an agar surface resulted in a slower induction. The Ric 1 gene product shows homology to an embryo-specific polypeptide of carrot seeds and to the group 3 of late-embryogenesis-abundant (LEA) proteins. Interestingly, ABA treatment improved the desiccation tolerance of the submerged thalli. Additionally, ABA stimulated the synthesis of a protein which is immunologically related to a tonoplast protein. This finding, together with the fact that the ABA-induced landform exhibits an increased activity of several vacuolar enzymes, may indicate a special role of the tonoplast and the vacuole during ABA-induced conversion of the thallus from the submerged to the terrestrial form.
Stichworte
drought tolerance; abscisic acid; protein synthesis; vacuole; Riccia
Erscheinungsjahr
1996
Zeitschriftentitel
Planta
Band
198
Ausgabe
3
Seite(n)
423-432
ISSN
0032-0935
eISSN
1432-2048
Page URI
https://pub.uni-bielefeld.de/record/2408018

Zitieren

Hellwege EM, Dietz K-J, Hartung W. Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta. 1996;198(3):423-432.
Hellwege, E. M., Dietz, K. - J., & Hartung, W. (1996). Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta, 198(3), 423-432. doi:10.1007/BF00620059
Hellwege, E. M., Dietz, K. - J., and Hartung, W. (1996). Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta 198, 423-432.
Hellwege, E.M., Dietz, K.-J., & Hartung, W., 1996. Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta, 198(3), p 423-432.
E.M. Hellwege, K.-J. Dietz, and W. Hartung, “Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L”, Planta, vol. 198, 1996, pp. 423-432.
Hellwege, E.M., Dietz, K.-J., Hartung, W.: Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta. 198, 423-432 (1996).
Hellwege, E. M., Dietz, Karl-Josef, and Hartung, W. “Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L”. Planta 198.3 (1996): 423-432.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

ABA in bryophytes: how a universal growth regulator in life became a plant hormone?
Takezawa D, Komatsu K, Sakata Y., J Plant Res 124(4), 2011
PMID: 21416316
Hormonal regulation in green plant lineage families.
Johri MM., Physiol Mol Biol Plants 14(1-2), 2008
PMID: 23572871
The enigmatic LEA proteins and other hydrophilins.
Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA., Plant Physiol 148(1), 2008
PMID: 18772351
Mapping of the Physcomitrella patens proteome.
Sarnighausen E, Wurtz V, Heintz D, Van Dorsselaer A, Reski R., Phytochemistry 65(11), 2004
PMID: 15276455

35 References

Daten bereitgestellt von Europe PubMed Central.


RJ, Proc Natl Acad Sci USA 89(), 1992
Sequence and characterization of 6 Lea proteins and their genes from cotton.
Baker J, Van Dennsteele C, Dure L 3rd., Plant Mol. Biol. 11(3), 1988
PMID: 24272341
Onset of desiccation tolerance during development of the barley embryo.
Bartels D, Singh M, Salamini F., Planta 175(4), 1988
PMID: 24221930
Immunological characterization of two dominant tonoplast polypeptides.
Betz M, Dietz KJ., Plant Physiol. 97(4), 1991
PMID: 16668546

H, Electrophoresis 8(), 1987
Hydrolytic enzymes in the central vacuole of plant cells.
Boller T, Kende H., Plant Physiol. 63(6), 1979
PMID: 16660869

EA, Plant Cell Environ 13(), 1990
A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn.
Close TJ, Kortt AA, Chandler PM., Plant Mol. Biol. 13(1), 1989
PMID: 2562763

AUTHOR UNKNOWN, 0
A view of plant dehydrins using antibodies specific to the carboxy terminal peptide.
Close TJ, Fenton RD, Moonan F., Plant Mol. Biol. 23(2), 1993
PMID: 7693020
Sequence analysis of a cDNA encoding a group 3 LEA mRNA inducible by ABA or dehydration stress in wheat.
Curry J, Morris CF, Walker-Simmons MK., Plant Mol. Biol. 16(6), 1991
PMID: 1830822
Common amino acid sequence domains among the LEA proteins of higher plants.
Dure L 3rd, Crouch M, Harada J, Ho TH, Mundy J, Quatrano R, Thomas T, Sung ZR., Plant Mol. Biol. 12(5), 1989
PMID: 24271064

AUTHOR UNKNOWN, 0
Molecular and genetic analysis of an embryonic gene, DC 8, from Daucus carota L.
Franz G, Hatzopoulos P, Jones TJ, Krauss M, Sung ZR., Mol. Gen. Genet. 218(1), 1989
PMID: 2571069
Gene Expression in Developing Zea mays Embryos: Regulation by Abscisic Acid of a Highly Phosphorylated 23- to 25-kD Group of Proteins.
Goday A, Sanchez-Martinez D, Gomez J, Puigdomenech P, Pages M., Plant Physiol. 88(3), 1988
PMID: 16666349
A simple and very efficient method for generating cDNA libraries.
Gubler U, Hoffman BJ., Gene 25(2-3), 1983
PMID: 6198242
Unusual sequence of an abscisic acid-inducible mRNA which accumulates late in Brassica napus seed development.
Harada JJ, Delisle AJ, Baden CS, Crouch ML., Plant Mol. Biol. 12(4), 1989
PMID: 24272900

W, Prog Bot 55(), 1994
Abscisic Acid Regulation of DC8, A Carrot Embryonic Gene.
Hatzopoulos P, Fong F, Sung ZR., Plant Physiol. 94(2), 1990
PMID: 16667766

E, J Plant Physiol 140(), 1992

EM, Planta 194(), 1994
A simple method for displaying the hydropathic character of a protein.
Kyte J, Doolittle RF., J. Mol. Biol. 157(1), 1982
PMID: 7108955
High resolution two-dimensional electrophoresis of proteins.
O'Farrell PH., J. Biol. Chem. 250(10), 1975
PMID: 236308

J, 1989

K, Planta 189(), 1993

WS, Develop Gen 11(), 1990
Gene expression in response to abscisic acid and osmotic stress.
Skriver K, Mundy J., Plant Cell 2(6), 1990
PMID: 2152172
Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw.
Werner O, Ros Espin RM, Bopp M, Atzorn R., Planta 186(1), 1991
PMID: 24186580

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 8717137
PubMed | Europe PMC

Suchen in

Google Scholar