The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum

Feng J, Che Y, Milse J, Yin Y-J, Liu L, Rückert C, Shen X-H, Qi S-W, Kalinowski J, Liu S-J (2006)
Journal of Biological Chemistry 281(16): 10778-10785.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Feng, Jie; Che, Yongsheng; Milse, JohannaUniBi; Yin, Ya-Jie; Liu, Lei; Rückert, ChristianUniBi ; Shen, Xi-Hui; Qi, Su-Wei; Kalinowski, JörnUniBi; Liu, Shuang-Jiang
Abstract / Bemerkung
Data mining of the Corynebacterium glutamicum genome identified 4 genes analogous to the mshA, mshB, mshC, and mshD genes that are involved in biosynthesis of mycothiol in Mycobacterium tuberculosis and Mycobacterium smegmatis. Individual deletion of these genes was carried out in this study. Mutants mshC– and mshD– lost the ability to produce mycothiol, but mutant mshB– produced mycothiol as the wild type did. The phenotypes of mutants mshC– and mshD– were the same as the wild type when grown in LB or BHIS media, but mutants mshC– and mshD– were not able to grow in mineral medium with gentisate or 3-hydroxybenzoate as carbon sources. C. glutamicum assimilated gentisate and 3-hydroxybenzoate via a glutathione-independent gentisate pathway. In this study it was found that the maleylpyruvate isomerase, which catalyzes the conversion of maleylpyruvate into fumarylpyruvate in the glutathione-independent gentisate pathway, needed mycothiol as a cofactor. This mycothiol-dependent maleylpyruvate isomerase gene (ncgl2918) was cloned, actively expressed, and purified from Escherichia coli. The purified mycothiol-dependent isomerase is a monomer of 34 kDa. The apparent Km and Vmax values for maleylpyruvate were determined to be 148.4 ± 11.9 μm and 1520 ± 57.4 μmol/min/mg, respectively (mycothiol concentration, 2.5 μm). Previous studies had shown that mycothiol played roles in detoxification of oxidative chemicals and antibiotics in streptomycetes and mycobacteria. To our knowledge, this is the first demonstration that mycothiol is essential for growth of C. glutamicum with gentisate or 3-hydroxybenzoate as carbon sources and the first characterization of a mycothiol-dependent maleylpyruvate isomerase.
Erscheinungsjahr
2006
Zeitschriftentitel
Journal of Biological Chemistry
Band
281
Ausgabe
16
Seite(n)
10778-10785
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/2405187

Zitieren

Feng J, Che Y, Milse J, et al. The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum. Journal of Biological Chemistry. 2006;281(16):10778-10785.
Feng, J., Che, Y., Milse, J., Yin, Y. - J., Liu, L., Rückert, C., Shen, X. - H., et al. (2006). The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum. Journal of Biological Chemistry, 281(16), 10778-10785. https://doi.org/10.1074/jbc.M513192200
Feng, Jie, Che, Yongsheng, Milse, Johanna, Yin, Ya-Jie, Liu, Lei, Rückert, Christian, Shen, Xi-Hui, Qi, Su-Wei, Kalinowski, Jörn, and Liu, Shuang-Jiang. 2006. “The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum”. Journal of Biological Chemistry 281 (16): 10778-10785.
Feng, J., Che, Y., Milse, J., Yin, Y. - J., Liu, L., Rückert, C., Shen, X. - H., Qi, S. - W., Kalinowski, J., and Liu, S. - J. (2006). The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum. Journal of Biological Chemistry 281, 10778-10785.
Feng, J., et al., 2006. The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum. Journal of Biological Chemistry, 281(16), p 10778-10785.
J. Feng, et al., “The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum”, Journal of Biological Chemistry, vol. 281, 2006, pp. 10778-10785.
Feng, J., Che, Y., Milse, J., Yin, Y.-J., Liu, L., Rückert, C., Shen, X.-H., Qi, S.-W., Kalinowski, J., Liu, S.-J.: The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum. Journal of Biological Chemistry. 281, 10778-10785 (2006).
Feng, Jie, Che, Yongsheng, Milse, Johanna, Yin, Ya-Jie, Liu, Lei, Rückert, Christian, Shen, Xi-Hui, Qi, Su-Wei, Kalinowski, Jörn, and Liu, Shuang-Jiang. “The Gene ncgl2918 Encodes a Novel Maleylpyruvate Isomerase That Needs Mycothiol as Cofactor and Links Mycothiol Biosynthesis and Gentisate Assimilation in Corynebacterium glutamicum”. Journal of Biological Chemistry 281.16 (2006): 10778-10785.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

47 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.
Imber M, Pietrzyk-Brzezinska AJ, Antelmann H., Redox Biol 20(), 2019
PMID: 30308476
The Role of Bacillithiol in Gram-Positive Firmicutes.
Chandrangsu P, Loi VV, Antelmann H, Helmann JD., Antioxid Redox Signal 28(6), 2018
PMID: 28301954
Chemistry and Redox Biology of Mycothiol.
Reyes AM, Pedre B, De Armas MI, Tossounian MA, Radi R, Messens J, Trujillo M., Antioxid Redox Signal 28(6), 2018
PMID: 28372502
Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis.
Perera VR, Lapek JD, Newton GL, Gonzalez DJ, Pogliano K., PLoS One 13(2), 2018
PMID: 29451913
Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum.
Si M, Wang T, Pan J, Lin J, Chen C, Wei Y, Lu Z, Wei G, Shen X., Antioxid Redox Signal 26(1), 2017
PMID: 27324811
Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A.
Zhao Q, Wang M, Xu D, Zhang Q, Liu W., Nature 518(7537), 2015
PMID: 25607359
Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway.
Goncharenko KV, Vit A, Blankenfeldt W, Seebeck FP., Angew Chem Int Ed Engl 54(9), 2015
PMID: 25597398
Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
Si M, Zhang L, Chaudhry MT, Ding W, Xu Y, Chen C, Akbar A, Shen X, Liu SJ., Appl Environ Microbiol 81(8), 2015
PMID: 25681179
Redox regulation by reversible protein S-thiolation in bacteria.
Loi VV, Rossius M, Antelmann H., Front Microbiol 6(), 2015
PMID: 25852656
The Corynebacterium glutamicum mycothiol peroxidase is a reactive oxygen species-scavenging enzyme that shows promiscuity in thiol redox control.
Pedre B, Van Molle I, Villadangos AF, Wahni K, Vertommen D, Turell L, Erdogan H, Mateos LM, Messens J., Mol Microbiol 96(6), 2015
PMID: 25766783
Bacillithiol: a key protective thiol in Staphylococcus aureus.
Perera VR, Newton GL, Pogliano K., Expert Rev Anti Infect Ther 13(9), 2015
PMID: 26184907
Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
Chi BK, Busche T, Van Laer K, Bäsell K, Becher D, Clermont L, Seibold GM, Persicke M, Kalinowski J, Messens J, Antelmann H., Antioxid Redox Signal 20(4), 2014
PMID: 23886307
Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.
Tomás-Gallardo L, Gómez-Álvarez H, Santero E, Floriano B., Microb Biotechnol 7(2), 2014
PMID: 24325207
NrdH Redoxin enhances resistance to multiple oxidative stresses by acting as a peroxidase cofactor in Corynebacterium glutamicum.
Si MR, Zhang L, Yang ZF, Xu YX, Liu YB, Jiang CY, Wang Y, Shen XH, Liu SJ., Appl Environ Microbiol 80(5), 2014
PMID: 24375145
Benzoate metabolism intermediate benzoyl coenzyme A affects gentisate pathway regulation in Comamonas testosteroni.
Chen DW, Zhang Y, Jiang CY, Liu SJ., Appl Environ Microbiol 80(13), 2014
PMID: 24771026
Purification and characterization of the Staphylococcus aureus bacillithiol transferase BstA.
Perera VR, Newton GL, Parnell JM, Komives EA, Pogliano K., Biochim Biophys Acta 1840(9), 2014
PMID: 24821014
Engineered coryneform bacteria as a bio-tool for arsenic remediation.
Villadangos AF, Ordóñez E, Pedre B, Messens J, Gil JA, Mateos LM., Appl Microbiol Biotechnol 98(24), 2014
PMID: 25208910
Functional characterization of Corynebacterium glutamicum mycothiol S-conjugate amidase.
Si M, Long M, Chaudhry MT, Xu Y, Zhang P, Zhang L, Shen X., PLoS One 9(12), 2014
PMID: 25514023
Glutathione analogs in prokaryotes.
Fahey RC., Biochim Biophys Acta 1830(5), 2013
PMID: 23075826
Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum.
Liu YB, Long MX, Yin YJ, Si MR, Zhang L, Lu ZQ, Wang Y, Shen XH., Arch Microbiol 195(6), 2013
PMID: 23615850
C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
Witthoff S, Mühlroth A, Marienhagen J, Bott M., Appl Environ Microbiol 79(22), 2013
PMID: 24014532
IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria.
Baumgart M, Luder K, Grover S, Gätgens C, Besra GS, Frunzke J., BMC Biol 11(), 2013
PMID: 24377418
Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038.
Liu TT, Xu Y, Liu H, Luo S, Yin YJ, Liu SJ, Zhou NY., Appl Microbiol Biotechnol 90(2), 2011
PMID: 21181154
The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum.
Zhao Z, Ding JY, Li T, Zhou NY, Liu SJ., Appl Microbiol Biotechnol 90(6), 2011
PMID: 21468701
The DinB superfamily includes novel mycothiol, bacillithiol, and glutathione S-transferases.
Newton GL, Leung SS, Wakabayashi JI, Rawat M, Fahey RC., Biochemistry 50(49), 2011
PMID: 22059487
Identification and quantification of mycothiol in Actinobacteria by a novel enzymatic method.
Yin YJ, Wang BJ, Jiang CY, Luo YM, Jin JH, Liu SJ., Appl Microbiol Biotechnol 88(6), 2010
PMID: 20922372
Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange.
Ordóñez E, Van Belle K, Roos G, De Galan S, Letek M, Gil JA, Wyns L, Mateos LM, Messens J., J Biol Chem 284(22), 2009
PMID: 19286650
Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria.
Newton GL, Buchmeier N, Fahey RC., Microbiol Mol Biol Rev 72(3), 2008
PMID: 18772286
Characterization of a mycothiol ligase mutant of Rhodococcus jostii RHA1.
Dosanjh M, Newton GL, Davies J., Res Microbiol 159(9-10), 2008
PMID: 18832026
Mycothiol-dependent proteins in actinomycetes.
Rawat M, Av-Gay Y., FEMS Microbiol Rev 31(3), 2007
PMID: 17286835
Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.
Huang Y, Zhao KX, Shen XH, Chaudhry MT, Jiang CY, Liu SJ., Appl Environ Microbiol 72(11), 2006
PMID: 16963551

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16481315
PubMed | Europe PMC

Suchen in

Google Scholar