Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles

Schurigt U, Schad C, Glowa C, Baum U, Thomale K, Schnitzer JK, Schultheis M, Schaschke N, Schirmeister T, Moll H (2010)
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 54(12): 5028-5041.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schurigt, Uta; Schad, Caroline; Glowa, Christin; Baum, Ulrike; Thomale, Katja; Schnitzer, Johannes K.; Schultheis, Martina; Schaschke, NorbertUniBi; Schirmeister, Tanja; Moll, Heidrun
Abstract / Bemerkung
The papain-like cysteine cathepsins expressed by Leishmania play a key role in the life cycle of these parasites, turning them into attractive targets for the development of new drugs. We previously demonstrated that two compounds of a series of peptidomimetic aziridine-2,3-dicarboxylate [Azi(OBn)(2)]-based inhibitors, Boc-(S)-Leu-(R)-Pro-(S, S)-Azi(OBn)(2) (compound 13b) and Boc-(R)-Leu-(S)-Pro-(S, S)-Azi(OBn)(2) (compound 13e), reduced the growth and viability of Leishmania major and the infection rate of macrophages while not showing cytotoxicity against host cells. In the present study, we characterized the mode of action of inhibitors 13b and 13e in L. major. Both compounds targeted leishmanial cathepsin B-like cysteine cathepsin cysteine proteinase C, as shown by fluorescence proteinase activity assays and active-site labeling with biotin-tagged inhibitors. Furthermore, compounds 13b and 13e were potent inducers of cell death in promastigotes, characterized by cell shrinkage, reduction of mitochondrial transmembrane potential, and increased DNA fragmentation. Transmission electron microscopic studies revealed the enrichment of undigested debris in lysosome-like organelles participating in micro-and macroautophagy-like processes. The release of digestive enzymes into the cytoplasm after rupture of membranes of lysosome-like vacuoles resulted in the significant digestion of intracellular compartments. However, the plasma membrane integrity of compound-treated promastigotes was maintained for several hours. Taken together, our results suggest that the induction of cell death in Leishmania by cysteine cathepsin inhibitors 13b and 13e is different from mammalian apoptosis and is caused by incomplete digestion in autophagy-related lysosome-like vacuoles.
Erscheinungsjahr
2010
Zeitschriftentitel
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Band
54
Ausgabe
12
Seite(n)
5028-5041
ISSN
0066-4804
eISSN
1098-6596
Page URI
https://pub.uni-bielefeld.de/record/2403684

Zitieren

Schurigt U, Schad C, Glowa C, et al. Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. 2010;54(12):5028-5041.
Schurigt, U., Schad, C., Glowa, C., Baum, U., Thomale, K., Schnitzer, J. K., Schultheis, M., et al. (2010). Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 54(12), 5028-5041. https://doi.org/10.1128/AAC.00327-10
Schurigt, Uta, Schad, Caroline, Glowa, Christin, Baum, Ulrike, Thomale, Katja, Schnitzer, Johannes K., Schultheis, Martina, Schaschke, Norbert, Schirmeister, Tanja, and Moll, Heidrun. 2010. “Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles”. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 54 (12): 5028-5041.
Schurigt, U., Schad, C., Glowa, C., Baum, U., Thomale, K., Schnitzer, J. K., Schultheis, M., Schaschke, N., Schirmeister, T., and Moll, H. (2010). Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 54, 5028-5041.
Schurigt, U., et al., 2010. Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 54(12), p 5028-5041.
U. Schurigt, et al., “Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles”, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 54, 2010, pp. 5028-5041.
Schurigt, U., Schad, C., Glowa, C., Baum, U., Thomale, K., Schnitzer, J.K., Schultheis, M., Schaschke, N., Schirmeister, T., Moll, H.: Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY. 54, 5028-5041 (2010).
Schurigt, Uta, Schad, Caroline, Glowa, Christin, Baum, Ulrike, Thomale, Katja, Schnitzer, Johannes K., Schultheis, Martina, Schaschke, Norbert, Schirmeister, Tanja, and Moll, Heidrun. “Aziridine-2,3-Dicarboxylate-Based Cysteine Cathepsin Inhibitors Induce Cell Death in Leishmania major Associated with Accumulation of Debris in Autophagy-Related Lysosome-Like Vacuoles”. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 54.12 (2010): 5028-5041.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis.
De Luca L, Ferro S, Buemi MR, Monforte AM, Gitto R, Schirmeister T, Maes L, Rescifina A, Micale N., Chem Biol Drug Des 92(3), 2018
PMID: 29729080
Development of a New Antileishmanial Aziridine-2,3-Dicarboxylate-Based Inhibitor with High Selectivity for Parasite Cysteine Proteases.
Schad C, Baum U, Frank B, Dietzel U, Mattern F, Gomes C, Ponte-Sucre A, Moll H, Schurigt U, Schirmeister T., Antimicrob Agents Chemother 60(2), 2016
PMID: 26596939
Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210.
Frank B, Marcu A, de Oliveira Almeida Petersen AL, Weber H, Stigloher C, Mottram JC, Scholz CJ, Schurigt U., Parasit Vectors 8(), 2015
PMID: 26226952
Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice.
Masic A, Valencia Hernandez AM, Hazra S, Glaser J, Holzgrabe U, Hazra B, Schurigt U., PLoS One 10(11), 2015
PMID: 26554591
Antileishmanial lead structures from nature: analysis of structure-activity relationships of a compound library derived from caffeic Acid bornyl ester.
Glaser J, Schultheis M, Hazra S, Hazra B, Moll H, Schurigt U, Holzgrabe U., Molecules 19(2), 2014
PMID: 24473204
Periodate-oxidized ATP modulates macrophage functions during infection with Leishmania amazonensis.
Figliuolo VR, Chaves SP, Santoro GF, Coutinho CM, Meyer-Fernandes JR, Rossi-Bergmann B, Coutinho-Silva R., Cytometry A 85(7), 2014
PMID: 24804957
Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.
Gonzalez-Leal IJ, Röger B, Schwarz A, Schirmeister T, Reinheckel T, Lutz MB, Moll H., PLoS Negl Trop Dis 8(9), 2014
PMID: 25255101
A novel Leishmania major amastigote assay in 96-well format for rapid drug screening and its use for discovery and evaluation of a new class of leishmanicidal quinolinium salts.
Bringmann G, Thomale K, Bischof S, Schneider C, Schultheis M, Schwarz T, Moll H, Schurigt U., Antimicrob Agents Chemother 57(7), 2013
PMID: 23587955
Discovery of safe and orally effective 4-aminoquinaldine analogues as apoptotic inducers with activity against experimental visceral leishmaniasis.
Palit P, Hazra A, Maity A, Vijayan RS, Manoharan P, Banerjee S, Mondal NB, Ghoshal N, Ali N., Antimicrob Agents Chemother 56(1), 2012
PMID: 22024817
Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease.
Nicoll-Griffith DA., Expert Opin Drug Discov 7(4), 2012
PMID: 22458506
Autophagy in trypanosomatids.
Brennand A, Rico E, Michels PA., Cells 1(3), 2012
PMID: 24710480
Identification and characterization of genes involved in leishmania pathogenesis: the potential for drug target selection.
Duncan R, Gannavaram S, Dey R, Debrabant A, Lakhal-Naouar I, Nakhasi HL., Mol Biol Int 2011(), 2011
PMID: 22091403

45 References

Daten bereitgestellt von Europe PubMed Central.

Cathepsin B-like cysteine proteinase-deficient mutants of Leishmania mexicana.
Bart G, Frame MJ, Carter R, Coombs GH, Mottram JC., Mol. Biochem. Parasitol. 88(1-2), 1997
PMID: 9274867
Trafficking of cysteine proteinase to Leishmania lysosomes: lack of involvement of glycosylation.
Boukai LK, da Costa-Pinto D, Soares MJ, McMahon-Pratt D, Traub-Cseko YM., Mol. Biochem. Parasitol. 107(2), 2000
PMID: 10779610
Expression and alteration of the S2 subsite of the Leishmania major cathepsin B-like cysteine protease.
Chan VJ, Selzer PM, McKerrow JH, Sakanari JA., Biochem. J. 340 ( Pt 1)(), 1999
PMID: 10229665
Leishmania (Leishmania) amazonensis: differential expression of proteinases and cell-surface polypeptides in avirulent and virulent promastigotes.
de Araujo Soares RM, dos Santos AL, Bonaldo MC, de Andrade AF, Alviano CS, Angluster J, Goldenberg S., Exp. Parasitol. 104(3-4), 2003
PMID: 14552857
Synthesis and antiplasmodial activity of a cysteine protease-inhibiting biotinylated aziridine-2,3-dicarboxylate.
Gelhaus C, Vicik R, Hilgenfeld R, Schmidt CL, Leippe M, Schirmeister T., Biol. Chem. 385(5), 2004
PMID: 15196005
Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools.
Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M., Chem. Biol. 7(8), 2000
PMID: 11048948

AUTHOR UNKNOWN, 1978

AUTHOR UNKNOWN, 2004
Leishmaniasis: current treatment and prospects for new drugs and vaccines.
Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, Junk PC, Kedzierska K., Curr. Med. Chem. 16(5), 2009
PMID: 19199925
Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009.
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G; Nomenclature Committee on Cell Death 2009., Cell Death Differ. 16(1), 2008
PMID: 18846107
Programmed cell death in the unicellular protozoan parasite Leishmania.
Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL., Cell Death Differ. 9(1), 2002
PMID: 11803374
Switch of CD4+ T cell differentiation from Th2 to Th1 by treatment with cathepsin B inhibitor in experimental leishmaniasis.
Maekawa Y, Himeno K, Ishikawa H, Hisaeda H, Sakai T, Dainichi T, Asao T, Good RA, Katunuma N., J. Immunol. 161(5), 1998
PMID: 9725203
Antileishmanial activity mediated by apoptosis and structure-based target study of peganine hydrochloride dihydrate: an approach for rational drug design.
Misra P, Khaliq T, Dixit A, SenGupta S, Samant M, Kumari S, Kumar A, Kushawaha PK, Majumder HK, Saxena AK, Narender T, Dube A., J. Antimicrob. Chemother. 62(5), 2008
PMID: 18694906
Cysteine peptidases as virulence factors of Leishmania.
Mottram JC, Coombs GH, Alexander J., Curr. Opin. Microbiol. 7(4), 2004
PMID: 15358255

AUTHOR UNKNOWN, 2000
Cathepsin L is crucial for a Th1-type immune response during Leishmania major infection.
Onishi K, Li Y, Ishii K, Hisaeda H, Tang L, Duan X, Dainichi T, Maekawa Y, Katunuma N, Himeno K., Microbes Infect. 6(5), 2004
PMID: 15109961
Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes.
Paris C, Loiseau PM, Bories C, Breard J., Antimicrob. Agents Chemother. 48(3), 2004
PMID: 14982775
Aziridine-2,3-dicarboxylates, peptidomimetic cysteine protease inhibitors with antileishmanial activity.
Ponte-Sucre A, Vicik R, Schultheis M, Schirmeister T, Moll H., Antimicrob. Agents Chemother. 50(7), 2006
PMID: 16801424
Cysteine protease inhibitors containing small rings.
Schirmeister T, Klockow A., Mini Rev Med Chem 3(6), 2003
PMID: 12871161
Generation, culture and flow-cytometric characterization of primary mouse macrophages.
Schleicher U, Bogdan C., Methods Mol. Biol. 531(), 2009
PMID: 19347320

AUTHOR UNKNOWN, 2007
Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors.
Selzer PM, Chen X, Chan VJ, Cheng M, Kenyon GL, Kuntz ID, Sakanari JA, Cohen FE, McKerrow JH., Exp. Parasitol. 87(3), 1997
PMID: 9371086
Cysteine protease inhibitors as chemotherapy: lessons from a parasite target.
Selzer PM, Pingel S, Hsieh I, Ugele B, Chan VJ, Engel JC, Bogyo M, Russell DG, Sakanari JA, McKerrow JH., Proc. Natl. Acad. Sci. U.S.A. 96(20), 1999
PMID: 10500116
Synthesis and antileishmanial activities of novel 3-substituted quinolines.
Tempone AG, da Silva AC, Brandt CA, Martinez FS, Borborema SE, da Silveira MA, de Andrade HF Jr., Antimicrob. Agents Chemother. 49(3), 2005
PMID: 15728905
Novel epoxysuccinyl peptides. A selective inhibitor of cathepsin B, in vivo.
Towatari T, Nikawa T, Murata M, Yokoo C, Tamai M, Hanada K, Katunuma N., FEBS Lett. 280(2), 1991
PMID: 2013329
Autophagy-physiology and pathophysiology.
Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M., Histochem. Cell Biol. 129(4), 2008
PMID: 18320203
Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum.
van Zandbergen G, Bollinger A, Wenzel A, Kamhawi S, Voll R, Klinger M, Muller A, Holscher C, Herrmann M, Sacks D, Solbach W, Laskay T., Proc. Natl. Acad. Sci. U.S.A. 103(37), 2006
PMID: 16945916

AUTHOR UNKNOWN, 2007
Inhibitors of cysteine proteases.
Vicik R, Busemann M, Baumann K, Schirmeister T., Curr Top Med Chem 6(4), 2006
PMID: 16611146
Aziridide-based inhibitors of cathepsin L: synthesis, inhibition activity, and docking studies.
Vicik R, Busemann M, Gelhaus C, Stiefl N, Scheiber J, Schmitz W, Schulz F, Mladenovic M, Engels B, Leippe M, Baumann K, Schirmeister T., ChemMedChem 1(10), 2006
PMID: 16933358
Aziridine-2,3-dicarboxylate inhibitors targeting the major cysteine protease of Trypanosoma brucei as lead trypanocidal agents.
Vicik R, Hoerr V, Glaser M, Schultheis M, Hansell E, McKerrow JH, Holzgrabe U, Caffrey CR, Ponte-Sucre A, Moll H, Stich A, Schirmeister T., Bioorg. Med. Chem. Lett. 16(10), 2006
PMID: 16516467
Cooperation between apoptotic and viable metacyclics enhances the pathogenesis of Leishmaniasis.
Wanderley JL, Pinto da Silva LH, Deolindo P, Soong L, Borges VM, Prates DB, de Souza AP, Barral A, Balanco JM, do Nascimento MT, Saraiva EM, Barcinski MA., PLoS ONE 4(5), 2009
PMID: 19478944
Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana.
Williams RA, Tetley L, Mottram JC, Coombs GH., Mol. Microbiol. 61(3), 2006
PMID: 16803590
Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis?
Zangger H, Mottram JC, Fasel N., Cell Death Differ. 9(10), 2002
PMID: 12232801
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20855728
PubMed | Europe PMC

Suchen in

Google Scholar